BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins thr

Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.

Related Articles Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.

Chemphyschem. 2004 Jun 21;5(6):807-14

Authors: Cisnetti F, Loth K, Pelupessy P, Bodenhausen G

The principal components and orientations of the chemical shift anisotropy (CSA) tensors of nearly all 13C carbonyl nuclei in a small protein have been determined in isotropic solution by a combination of three complementary cross-correlation measurements.

PMID: 15253308 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Ultrahigh resolution protein structures using NMR chemical shift tensors [Biophysics and Computational Biology]
Ultrahigh resolution protein structures using NMR chemical shift tensors Wylie, B. J., Sperling, L. J., Nieuwkoop, A. J., Franks, W. T., Oldfield, E., Rienstra, C. M.... Date: 2011-10-11 NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13C? and 15N (peptide backbone) groups in a protein, the ?1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13C? and...
nmrlearner Journal club 0 10-12-2011 06:37 AM
Calculation of chemical shift anisotropy in proteins
Calculation of chemical shift anisotropy in proteins Abstract Individual peptide groups in proteins must exhibit some variation in the chemical shift anisotropy (CSA) of their constituent atoms, but not much is known about the extent or origins of this dispersion. Direct spectroscopic measurement of CSA remains technically challenging, and theoretical methods can help to overcome these limitations by estimating shielding tensors for arbitrary structures. Here we use an automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach to compute 15N, 13Cā?² and 1H...
nmrlearner Journal club 0 08-29-2011 06:41 AM
[Question from NMRWiki Q&A forum] Why is chemical shift range of 13C wider than of 1H nuclei?
Why is chemical shift range of 13C wider than of 1H nuclei? Why the chemical shift range of 1H nmr is ~20 ppm wheras for 13C nmr it is ~230 ppm? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 01-14-2011 01:59 AM
[NMR paper] Heteronuclear NMR studies of cobalt corrinoids. 20. 31P chemical shift anisotropy of
Heteronuclear NMR studies of cobalt corrinoids. 20. 31P chemical shift anisotropy of aquacobalamin and its complex with a haptocorrin from chicken serum. Related Articles Heteronuclear NMR studies of cobalt corrinoids. 20. 31P chemical shift anisotropy of aquacobalamin and its complex with a haptocorrin from chicken serum. J Inorg Biochem. 1998 Sep;71(3-4):199-204 Authors: Brown KL, Wilson WW, Jacobsen DW Static light scattering measurements have been used to determine the molecular mass (65.3 kDa) and second virial coefficient (3.66 x 10(-4)...
nmrlearner Journal club 0 11-17-2010 11:15 PM
Chemical shift tensors: Theory and application to molecular structural problems
Chemical shift tensors: Theory and application to molecular structural problems Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 22 October 2010</br> Julio C., Facelli</br> More...
nmrlearner Journal club 0 10-23-2010 07:42 AM
Determination of relative tensor orientations by ?-encoded chemical shift anisotropy/
Determination of relative tensor orientations by ?-encoded chemical shift anisotropy/heteronuclear dipolar coupling 3D NMR spectroscopy in biological solids. Related Articles Determination of relative tensor orientations by ?-encoded chemical shift anisotropy/heteronuclear dipolar coupling 3D NMR spectroscopy in biological solids. Phys Chem Chem Phys. 2010 Oct 8; Authors: Hou G, Paramasivam S, Byeon IJ, Gronenborn AM, Polenova T In this paper, we present 3D chemical shift anisotropy (CSA)/dipolar coupling correlation experiments, based on ?-encoded...
nmrlearner Journal club 0 10-12-2010 02:52 PM
The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross
The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acs_authorchoice.jpg http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. J Am Chem Soc. 2010 Aug 11;132(31):10866-75 ...
nmrlearner Journal club 0 08-17-2010 03:36 AM
chemical shift anisotropy (CSA) in model-free approach
Hi ! I have a quite general question about the value used for the CSA while studying protein dynamics of 15N-1H vectors with model-free approach. In the litterature, we mainly find two values for the CSA (-160 and -172 ppm). There is, if I understand well, a link between the bond length and the CSA, but everyone seems to agree about using the same value of 1.02 A which should give rise to a mean S2 of 0.85 for secondary structure when combined to a CSA of -172 ppm. When using a CSA of -160 ppm, the mean S2 for secondary structure should slightly rise up from 0.85. The manuals for...
semor NMR Questions and Answers 1 09-29-2006 12:08 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:14 AM.


Map