Related ArticlesDetermination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM.
Phys Chem Chem Phys. 2018 Mar 26;:
Authors: Fritz M, Quinn CM, Wang M, Hou G, Lu X, Koharudin LMI, Struppe J, Case DA, Polenova T, Gronenborn AM
Abstract
Chemical shifts are highly sensitive probes of local conformation and overall structure. Both isotropic shifts and chemical shift tensors are readily accessible from NMR experiments but their quantum mechanical calculations remain challenging. In this work, we report and compare accurately measured and calculated 15NH and 13C? chemical shift tensors in proteins, using the microcrystalline agglutinin from Oscillatoria agardhii (OAA). Experimental 13C? and 15NH chemical tensors were obtained by solid-state NMR spectroscopy, employing tailored recoupling sequences, and for their quantum mechanics/molecular mechanics (QM/MM) calculations different sets of functionals were evaluated. We show that 13C? chemical shift tensors are primarily determined by backbone dihedral angles and dynamics, while 15NH tensors mainly depend on local electrostatic contributions from solvation and hydrogen bonding. In addition, the influence of including crystallographic waters, the molecular mechanics geometry optimization protocol, and the level of theory on the accuracy of the calculated chemical shift tensors is discussed. Specifically, the power of QM/MM calculations in accurately predicting the unusually upfield shifted 1HN G26 and G93 resonances is highlighted. Our integrated approach is expected to benefit structure refinement of proteins and protein assemblies.
PMID: 29577158 [PubMed - as supplied by publisher]
[NMR paper] Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.
Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.
Related Articles Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.
Solid State Nucl Magn Reson. 2018 Mar 15;92:1-6
Authors: Paramasivam S, Gronenborn AM, Polenova T
Abstract
Chemical shift tensors (CSTs) are an exquisite probe of local geometric and electronic structure. 15N CST are very sensitive to hydrogen bonding, yet...
nmrlearner
Journal club
0
03-27-2018 09:54 PM
Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study
Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study
Publication date: Available online 15 March 2018
Source:Solid State Nuclear Magnetic Resonance</br>
Author(s): Sivakumar Paramsivam, Angela M. Gronenborn, Tatyana Polenova</br>
Chemical shift tensors (CSTs) are an exquisite probe of local geometric and electronic structure. 15N CST are very sensitive to hydrogen bonding, yet they have been reported for very few proteins to date. Here we present experimental results and statistical...
nmrlearner
Journal club
0
03-17-2018 12:12 PM
[NMR paper] Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.
Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.
Chem Commun (Camb). 2012 Nov 25;48(91):11199-201
...
Ultrahigh resolution protein structures using NMR chemical shift tensors [Biophysics and Computational Biology]
Ultrahigh resolution protein structures using NMR chemical shift tensors
Wylie, B. J., Sperling, L. J., Nieuwkoop, A. J., Franks, W. T., Oldfield, E., Rienstra, C. M....
Date: 2011-10-11
NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13C? and 15N (peptide backbone) groups in a protein, the ?1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13C? and...
nmrlearner
Journal club
0
10-12-2011 06:37 AM
[NMR paper] Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Related Articles Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
J Am Chem Soc. 2005 Aug 31;127(34):11946-7
Authors: Wylie BJ, Franks WT, Graesser DT, Rienstra CM
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins thr
Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.
Related Articles Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.
Chemphyschem. 2004 Jun 21;5(6):807-14
Authors: Cisnetti F, Loth K, Pelupessy P, Bodenhausen G
The principal components and orientations of the chemical shift anisotropy (CSA) tensors of nearly all 13C carbonyl nuclei in a small protein have been determined in isotropic solution...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
Chemical shift tensors: Theory and application to molecular structural problems
Chemical shift tensors: Theory and application to molecular structural problems
Publication year: 2010
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 22 October 2010</br>
Julio C., Facelli</br>
More...