Related ArticlesDetection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
J Mol Biol. 2002 Sep 13;322(2):425-40
Authors: Rubin SM, Lee SY, Ruiz EJ, Pines A, Wemmer DE
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered.
Engineering [Ln(DPA)3]3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions
Engineering 3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions
Abstract Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and...
nmrlearner
Journal club
0
07-26-2011 11:11 AM
[NMR paper] Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Related Articles Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
J Am Chem Soc. 2005 Aug 24;127(33):11676-83
Authors: Desvaux H, Dubois L, Huber G, Quillin ML, Berthault P, Matthews BW
Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Related Articles Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Biochemistry. 2005 Aug 23;44(33):11014-23
Authors: Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ
A method is presented that allows the identification and quantitative characterization of metal binding sites in proteins using paramagnetic nuclear magnetic resonance spectroscopy. The method relies on the nonselective...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Selective interface detection: mapping binding site contacts in membrane proteins by
Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy.
Related Articles Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy.
J Am Chem Soc. 2005 Apr 27;127(16):5734-5
Authors: Kiihne SR, Creemers AF, de Grip WJ, Bovee-Geurts PH, Lugtenburg J, de Groot HJ
Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Detection of a conformational change in maltose binding protein by (129)Xe NMR spectr
Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy.
Related Articles Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy.
J Am Chem Soc. 2001 Sep 5;123(35):8616-7
Authors: Rubin SM, Spence MM, Dimitrov IE, Ruiz EJ, Pines A, Wemmer DE