Related ArticlesDetailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO.
J Biomol NMR. 1998 Feb;11(2):119-33
Authors: Alam SL, Volkman BF, Markley JL, Satterlee JD
Complete 13C, 15N, and 1H resonance assignments have been obtained for the recombinant, ferrous CO-ligated from of component IV monomeric hemoglobin from Glycera dibranchiata. This 15642 Da myoglobin-like protein contains a large number of glycine and alanine residues (47) and a heme prosthetic group. Coupling constant information has allowed the determination of chi(1) and chi(2) torsion angles, backbone phi angles, as well as 43 of 81 possible assignments to H beta 2/beta 3 pairs. The 13C alpha, 13 beta, 13C', and 1H alpha assignments yield a consensus chemical shift index (CSI) that, in combination with NOE information and backbone torsion angles, defines seven distinct helical regions for the protein's global architecture. Discrepancies between the CSI and NOE/3JHNH alpha-based secondary structure definitions have been attributed to heme ring current shifts on the basis of calculations from a model structure [Alam et al. (1994) J. Protein Chem., 13, 151-164]. The agreement can be improved by correcting the 1H alpha chemical shifts for the ring current contributions. Because the holoprotein was assembled from isotopically enriched globin and natural isotope-abundance heme, data from 13C-filtered/13C-edited and 13C-filtered/13C-filtered 2D NOESY experiments could be used to determine complete heme proton assignments and to position the heme within the protein. The results confirm the unusual presence of Phe31 (B10) and Leu58 (E7) side chains near the heme ligand binding site which may alter the polarity and steric environment and thus the functional properties of this protein.
[NMR paper] Analysis of protein/ligand interactions with NMR diffusion measurements: the importan
Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background.
Related Articles Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background.
J Magn Reson. 2002 Apr;155(2):217-25
Authors: Derrick TS, McCord EF, Larive CK
Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) is a well-established method for the determination of translational diffusion coefficients. Recently, this method has found applicability in...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis.
Related Articles Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis.
J Am Chem Soc. 2010 Aug 20;
Authors: Hu Y, Zhao E, Li H, Xia B, Jin C
The twin-arginine transport (Tat) system translocates folded proteins across the bacterial cytoplasmic or chloroplast thylakoid membrane of plants. The Tat system in most Gram-positive...
nmrlearner
Journal club
0
08-25-2010 02:04 PM
[NMR paper] Solution structure of phenol hydroxylase protein component P2 determined by NMR spect
Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy.
Biochemistry. 1997 Jan 21;36(3):495-504
Authors: Qian H, Edlund U, Powlowski J, Shingler V, Sethson I
Phenol hydroxylase from Pseudomonas sp. CF600 is a member of a family of binuclear iron-center-containing multicomponent oxygenases, which catalyzes the...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Solution structure of phenol hydroxylase protein component P2 determined by NMR spect
Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy.
Biochemistry. 1997 Jan 21;36(3):495-504
Authors: Qian H, Edlund U, Powlowski J, Shingler V, Sethson I
Phenol hydroxylase from Pseudomonas sp. CF600 is a member of a family of binuclear iron-center-containing multicomponent oxygenases, which catalyzes the...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] NMR restraint analysis of transforming growth factor alpha: a key component for NMR s
NMR restraint analysis of transforming growth factor alpha: a key component for NMR structure refinement.
Related Articles NMR restraint analysis of transforming growth factor alpha: a key component for NMR structure refinement.
Proteins. 1992 Aug;13(4):306-26
Authors: Brown FK, Hempel JC, Jeffs PW
Structures of the protein, transforming growth factor alpha (TGF-alpha), have been derived from NMR data using distance geometry and subsequent energy refinement. Analysis of the sequential NOE distance bounds using a template algorithm provides a...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprote
RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495-9
Authors: Hoffman DW, Query CC, Golden BL, White...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Biochemistry. 1991 Feb 19;30(7):1878-87
Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis
Yunfei Hu et al
http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1053785/aop/images/medium/ja-2010-053785_0001.gifJournal of the American Chemical Society, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable).
Source: Journal of the American Chemical Society