Related ArticlesDeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe.
Nat Commun. 2020 Sep 25;11(1):4857
Authors: Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang ZY, Wang XY, Sun P, Wang QW, Qu CX, Gong Z, Lin JY, Xu Z, Song SL, Huang SM, Guo SC, Han MJ, Zhu KK, Chen X, Kahsai AW, Xiao KH, Kong W, Li FH, Ruan K, Li ZJ, Yu X, Niu XG, Jin CW, Wang J, Sun JP
Abstract
Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-?2 adrenergic receptor/?-arrestin-1(?-arr1) membrane protein signaling complex, using only 5 ?M protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ?-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.
PMID: 32978402 [PubMed - as supplied by publisher]
[NMR paper] Trimethylsilyl tag for probing protein-ligand interactions by NMR.
Trimethylsilyl tag for probing protein-ligand interactions by NMR.
Trimethylsilyl tag for probing protein-ligand interactions by NMR.
J Biomol NMR. 2018 Mar 21;:
Authors: Becker W, Adams LA, Graham B, Wagner GE, Zangger K, Otting G, Nitsche C
Abstract
Protein-ligand titrations can readily be monitored with a trimethylsilyl (TMS) tag. Owing to the intensity, narrow line shape and unique chemical shift of a TMS group, dissociation constants can be determined from straightforward 1D 1H-NMR spectra not only in the fast but also in...
nmrlearner
Journal club
0
03-23-2018 11:18 AM
[NMR paper] Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR.
Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR.
Related Articles Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR.
Nat Commun. 2018 Jan 15;9(1):194
Authors: Shiraishi Y, Natsume M, Kofuku Y, Imai S, Nakata K, Mizukoshi T, Ueda T, Iwaï H, Shimada I
Abstract
The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to...
nmrlearner
Journal club
0
01-18-2018 12:41 PM
[NMR paper] Genetically encoded amino acids with tert-butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy.
Genetically encoded amino acids with tert-butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy.
Genetically encoded amino acids with tert-butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy.
J Biomol NMR. 2017 Dec 02;:
Authors: Loh CT, Adams LA, Graham B, Otting G
Abstract
The amino acids 4-(tert-butyl)phenylalanine (Tbf) and 4-(trimethylsilyl)phenylalanine (TMSf), as well as a partially deuterated version of Tbf (dTbf), were chemically synthesized and...
nmrlearner
Journal club
0
12-05-2017 07:35 PM
Genetically encoded amino acids with tert -butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy
Genetically encoded amino acids with tert -butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy
Abstract
The amino acids 4-(tert-butyl)phenylalanine (Tbf) and 4-(trimethylsilyl)phenylalanine (TMSf), as well as a partially deuterated version of Tbf (dTbf), were chemically synthesized and site-specifically incorporated into different proteins, using an amber stop codon, suppressor tRNA and the broadband aminoacyl-tRNA synthetase originally evolved for the incorporation of p-cyano-phenylalanine. The 1H-NMR signals of...
nmrlearner
Journal club
0
12-02-2017 02:54 PM
[NMR paper] Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.
Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_final.gif Related Articles Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.
J Biol Chem. 2015 Apr 17;290(16):10000-17
Authors: Basudhar D, Madrona Y, Kandel S, Lampe JN, Nishida CR, de Montellano PR
...
nmrlearner
Journal club
0
06-20-2015 06:44 PM
[NMR paper] Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR.
Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR.
Related Articles Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR.
J Med Chem. 2014 Jul 28;
Authors: Ge X, MacRaild CA, Devine S, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders RF, Foley M, Norton RS
Abstract
We established an efficient means of probing ligand-induced conformational change in the malaria drug target AMA1 using 19F NMR. AMA1 was labeled with 5-fluorotryptophan (5F-Trp) and...
[NMR paper] Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit i
Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit in the binding site of isorhodopsin.
Related Articles Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit in the binding site of isorhodopsin.
Biochemistry. 2004 Dec 28;43(51):16011-8
Authors: Creemers AF, Bovee-Geurts PH, DeGrip WJ, Lugtenburg J, de Groot HJ
Rhodopsin is the photosensitive protein of the rod photoreceptor in the vertebrate retina and is a paradigm for the superfamily of G-protein-coupled receptors (GPCRs)....