BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-20-2014, 08:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis.

Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis.

Related Articles Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis.

Chembiochem. 2014 Nov 18;

Authors: Rauthu SR, Shiao TC, André S, Miller MC, Madej E, Mayo KH, Gabius HJ, Roy R

Abstract
The emerging significance of lectins for pathophysiological processes provides incentive for the design of potent inhibitors. To this end, systematic assessment of contributions to affinity and selectivity by distinct types of synthetic tailoring of glycosides is a salient step, here taken for the aglyconic modifications of two disaccharide core structures. Firstly we report the synthesis of seven N-linked-lactosides and of eight O-linked N-acetyllactosamines, each substituted with a 1,2,3-triazole unit, prepared by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The totally regioselective ?-D-(1->4) galactosylation of a 6-O-TBDPSi-protected N-acetylglucosamine acceptor provided efficient access to the N-acetyllactosamine precursor. The resulting compounds were then systematically tested for lectin reactivity in two binding assays of increasing biorelevance (inhibition of lectin binding to a surface-presented glycoprotein and to cell surfaces). As well as a plant toxin, we also screened the relative inhibitory potential with adhesion/growth-regulatory galectins (total of eight proteins). This type of modification yielded up to 2.5-fold enhancement for prototype proteins, with further increases for galectins-3 and -4. Moreover, the availability of (15) N-labeled proteins and full assignments enabled (1) H,(15) N HSQC-based measurements for hu- man galectins-1, -3, and -7 against p-nitrophenyl lactopyranoside, a frequently tested standard inhibitor containing an aromatic aglycone. The measurements confirmed the highest affinity against galectin-3 and detected chemical shift differences in its hydrophobic core upon ligand binding, besides common alterations around the canonical contact site for the lactoside residue. What can be accomplished in terms of affinity/selectivity by this type of core extension having been determined, the applied combined strategy should be instrumental for proceeding with defining structure-activity correlations at other bioinspired sites in glycans and beyond the tested lectin types.


PMID: 25407851 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR.
Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR. Related Articles Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR. Biochem Soc Trans. 2014 Apr 1;42(2):302-7 Authors: Boulton S, Akimoto M, Vanschouwen B, Moleschi K, Selvaratnam R, Giri R, Melacini G Abstract Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine...
nmrlearner Journal club 0 03-22-2014 04:03 PM
[NMR paper] NMR screening of new carbocyanine dyes as ligands for affinity chromatography.
NMR screening of new carbocyanine dyes as ligands for affinity chromatography. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR screening of new carbocyanine dyes as ligands for affinity chromatography. J Mol Recognit. 2014 Apr;27(4):197-204 Authors: Cruz C, Boto RE, Drzazga AK, Almeida P, Queiroz JA Abstract Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have...
nmrlearner Journal club 0 03-05-2014 11:57 PM
Journal Highlight: 1H and 13C NMR-based sugar profiling with chemometric analysis and antioxidant activity of herbhoneys and honeys
Journal Highlight: 1H and 13C NMR-based sugar profiling with chemometric analysis and antioxidant activity of herbhoneys and honeys http://www.spectroscopynow.com/common/images/thumbnails/1447e6dff3b.jpg1H and 13C NMR spectroscopy coupled with chemometric analysis (PCA and PLS-DA) and antioxidant assays were used to study 25 samples of Polish herbhoneys and honeys. Read the rest at Spectroscopynow.com
nmrlearner General 0 03-03-2014 04:55 PM
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR.
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. J Med Chem. 2011 Feb 9; Authors: Singh A, Wilczynski A, Holder JR, Witek RM, Dirain ML, Xiang Z, Edison AS, Haskell-Luevano C By use of a solid-phase synthetic approach, a...
nmrlearner Journal club 0 02-11-2011 06:43 PM
[NMR paper] Enhancement of transglutaminase activity by NMR identification of its flexible residu
Enhancement of transglutaminase activity by NMR identification of its flexible residues affecting the active site. Related Articles Enhancement of transglutaminase activity by NMR identification of its flexible residues affecting the active site. FEBS Lett. 2002 Apr 24;517(1-3):175-9 Authors: Shimba N, Shinohara M, Yokoyama K, Kashiwagi T, Ishikawa K, Ejima D, Suzuki E Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Screening mixtures for biological activity by NMR.
Screening mixtures for biological activity by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Screening mixtures for biological activity by NMR. Eur J Biochem. 1997 Jun 15;246(3):705-9 Authors: Meyer B, Weimar T, Peters T Development of the new drugs often involves the screening of compound libraries for biological activity. Currently, the biologically active component can only be identified if either a pure compound is being...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose b
Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. Related Articles Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem. 1994 Jun 3;269(22):15505-11 Authors: Iobst ST, Wormald MR, Weis WI, Dwek RA, Drickamer K The Ca(2+)-dependent carbohydrate-recognition domain (CRD) of rat serum mannose-binding protein has been subjected to site-directed mutagenesis to determine the...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose b
Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. Related Articles Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem. 1994 Jun 3;269(22):15505-11 Authors: Iobst ST, Wormald MR, Weis WI, Dwek RA, Drickamer K The Ca(2+)-dependent carbohydrate-recognition domain (CRD) of rat serum mannose-binding protein has been subjected to site-directed mutagenesis to determine the...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:46 AM.


Map