De Novo 3D Structure Determination from Sub-milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy.
Angew Chem Int Ed Engl. 2014 Sep 15;
Authors: Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Böckmann A, Meier BH
Abstract
Solid-state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane-associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10-20 mg each. Here we show that a new NMR probe, pushing magic-angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well-defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 ?g protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in-cell or cell-free expression.
PMID: 25225004 [PubMed - as supplied by publisher]
[NMR paper] Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Nat Methods. 2013 Sep 8;
Authors: Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V
Abstract
Determination of structure of integral membrane proteins, especially in their native environment, is a formidable challenge in structural biology. Here we demonstrate that magic angle spinning...
nmrlearner
Journal club
0
09-10-2013 08:44 PM
[NMR paper] Protein Structure Determination with Paramagnetic Solid-State NMR Spectroscopy.
Protein Structure Determination with Paramagnetic Solid-State NMR Spectroscopy.
Related Articles Protein Structure Determination with Paramagnetic Solid-State NMR Spectroscopy.
Acc Chem Res. 2013 Mar 6;
Authors: Sengupta I, Nadaud PS, Jaroniec CP
Abstract
Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR)....
nmrlearner
Journal club
0
03-08-2013 10:35 PM
Structure determination in "shiftless" solid state NMR of oriented protein samples.
Structure determination in "shiftless" solid state NMR of oriented protein samples.
Structure determination in "shiftless" solid state NMR of oriented protein samples.
J Magn Reson. 2011 Jul 6;
Authors: Yin Y, Nevzorov AA
An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up...
nmrlearner
Journal club
0
07-12-2011 06:23 PM
Structure Determination in “Shiftless” Solid State NMR of Oriented Protein Samples
Structure Determination in “Shiftless” Solid State NMR of Oriented Protein Samples
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 20 June 2011</br>
Yuanyuan, Yin , Alexander A., Nevzorov</br>
An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up structural...
nmrlearner
Journal club
0
06-21-2011 03:40 PM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Protein structure determination by high-resolution solid-state NMR spectroscopy: appl
Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
Related Articles Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
J Am Chem Soc. 2005 Jun 22;127(24):8618-26
Authors: Zech SG, Wand AJ, McDermott AE
High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] A concept for rapid protein-structure determination by solid-state NMR spectroscopy.
A concept for rapid protein-structure determination by solid-state NMR spectroscopy.
Related Articles A concept for rapid protein-structure determination by solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2005 Mar 29;44(14):2089-92
Authors: Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] De novo protein structure determination using sparse NMR data.
De novo protein structure determination using sparse NMR data.
Related Articles De novo protein structure determination using sparse NMR data.
J Biomol NMR. 2000 Dec;18(4):311-8
Authors: Bowers PM, Strauss CE, Baker D
We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models...