We present a strategy dubbed CURD (correlations using recycle delays) to acquire chemical-shift assignments and distance restraints for proteins in a single experimental block under slow-moderate magic-angle spinning conditions. This is done by concatenating the 3D-CCC and 3D-NNC experiments, both of which individually require long experimental times for sufficient resolution and sensitivity to be realized. Unlike previous approaches, the CURD strategy does not increase the amount of...
[NMR paper] Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
Related Articles Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
J Phys Chem Lett. 2017 May 11;:
Authors: Jain MG, Lalli D, Stanek J, GOwda CM, Prakash S, Schwarzer TS, Schubeis T, Castiglione K, Andreas LB, Madhu PK, Pintacuda G, Agarwal V
Abstract
Very fast magic-angle spinning (MAS>80 kHz) NMR spectroscopy combined with high field magnets...
nmrlearner
Journal club
0
05-12-2017 05:13 PM
[NMR paper] Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.
Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.
Related Articles Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.
J Biomol NMR. 2016 Jan 4;
Authors: Tamaki H, Egawa A, Kido K, Kameda T, Kamiya M, Kikukawa T, Aizawa T, Fujiwara T, Demura M
Abstract
Magic angle spinning...
nmrlearner
Journal club
0
01-07-2016 08:36 AM
Structure determination of uniformly 13 C, 15 N labeled protein using qualitative distance restraints from MAS solid-state 13 C-NMR observed paramagnetic relaxation enhancement
Structure determination of uniformly 13 C, 15 N labeled protein using qualitative distance restraints from MAS solid-state 13 C-NMR observed paramagnetic relaxation enhancement
Abstract
Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from...
nmrlearner
Journal club
0
01-04-2016 07:49 PM
[NMR paper] A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.
A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.
Magn Reson Med. 2012 Dec;68(6):1705-12
Authors: Valette J, Giraudeau C, Marchadour C, Djemai B, Geffroy F, Ghaly MA, Le Bihan D, Hantraye P, Lebon V, Lethimonnier F
...
nmrlearner
Journal club
0
05-31-2013 11:16 AM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
J Am Chem Soc. 2011 Apr 4;
Authors: Ryabov Y, Schwieters CD, Clore GM
(15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201020c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner
Journal club
0
04-05-2011 10:37 AM
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Mar 24;
Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B
Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane...
nmrlearner
Journal club
0
03-26-2011 07:00 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja110222h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY