BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-27-2013, 01:52 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.

Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.

Related Articles Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.

J Biol Chem. 2013 Apr 26;288(17):11930-9

Authors: Basak S, Lim J, Manimekalai MS, Balakrishna AM, Grüber G

Abstract
Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 ? resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel ?-strands, which are intermittently surrounded by four ?-helices, and the C terminus, including the ?5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively.


PMID: 23476018 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. J Proteome Res. 2010 Dec 3;9(12):6729-39 Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner Journal club 0 05-25-2011 07:01 PM
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. J Bioenerg Biomembr. 2011 Mar 12; Authors: Rishikesan S, Thaker YR, Grüber G The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner Journal club 0 03-15-2011 04:06 PM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Biochemistry. 2005 Sep 6;44(35):11795-810 Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic
NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Related Articles NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1901-5 Authors: Page R, Peti W, Wilson IA, Stevens RC, Wüthrich K In the Joint Center for Structural Genomics, one-dimensional (1D) 1H NMR spectroscopy is routinely used to characterize the folded state of protein targets and,...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged he
The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy. Related Articles The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy. Nucleic Acids Res. 2003 Dec 15;31(24):7199-207 Authors: Ono K, Kusano O, Shimotakahara S, Shimizu M, Yamazaki T, Shindo H Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)
Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR. Related Articles Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR. FEBS Lett. 2000 Sep 29;482(1-2):25-30 Authors: Szabo CM, Sanders LK, Le HC, Chien EY, Oldfield E We have expressed -labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. J Mol Biol. 1999 Aug 20;291(3):661-9 Authors: Evans SP, Bycroft M In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccha
Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevesiae derived from SAXS and NMR spectroscopy. Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevesiae derived from SAXS and NMR spectroscopy. Biochim Biophys Acta. 2010 Sep 11; Authors: Basak S, Gayen S, Thaker YR, Manimekalai MS, Roessle M, Hunke C, Grüber G Vacuolar ATPases uses the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the...
nmrlearner Journal club 0 09-16-2010 02:59 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:44 PM.


Map