BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-10-2017, 04:19 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations.

CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations.

Related Articles CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations.

J Phys Chem B. 2017 Feb 09;:

Authors: Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P

Abstract
Single particle cryoEM has emerged as a powerful method for structure determination of proteins and complexes, complementing X-ray crystallography and NMR spectroscopy. Yet, for many systems, the resolution of cryoEM density map has been limited to 4-6 Å, which only allows for resolving bulky amino acids side chains, thus hindering accurate model building from the density map. On the other hand, experimental chemical shifts (CS) from solution and solid state MAS NMR spectra provide atomic level data for each amino acid within a molecule or a complex; however, structure determination of large complexes and assemblies based on NMR data alone remains challenging. Here we present a novel integrated strategy to combine the highly complementary experimental data from cryoEM and NMR computationally by molecular dynamics simulations to derive an atomistic model, which is not attainable by either approach alone. We use the HIV-1 capsid protein (CA) C-terminal domain as well as the large capsid assembly to demonstrate the feasibility of this approach, termed NMR CS-biased cryoEM structure refinement.


PMID: 28181439 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Erratum to: Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins
Erratum to: Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 03-06-2015 02:01 PM
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins Abstract There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not...
nmrlearner Journal club 0 11-21-2014 09:04 PM
[NMR paper] Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.
Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts. Related Articles Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts. Proc Natl Acad Sci U S A. 2014 Sep 5; Authors: Boomsma W, Tian P, Frellsen J, Ferkinghoff-Borg J, Hamelryck T, Lindorff-Larsen K, Vendruscolo M Abstract Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular...
nmrlearner Journal club 0 09-07-2014 12:36 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. J Phys Chem B. 2013 Feb 1; Authors: Camilloni C, Cavalli A, Vendruscolo M Abstract It has been recently...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Methods of NMR structure refinement: molecular dynamics simulations improve the agree
Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. J Biomol NMR. 2010 Jul;47(3):221-35 Authors: Dolenc J, Missimer JH, Steinmetz MO, van Gunsteren WF The C-terminal trigger...
nmrlearner Journal club 0 09-15-2010 02:26 PM
[NMR paper] NMR chemical shifts and structure refinement in proteins.
NMR chemical shifts and structure refinement in proteins. Related Articles NMR chemical shifts and structure refinement in proteins. J Biomol NMR. 1993 Sep;3(5):607-12 Authors: Laws DD, de Dios AC, Oldfield E Computation of the 13C alpha chemical shifts (or shieldings) of glycine, alanine and valine residues in bovine and Drosophila calmodulins and Staphylococcal nuclease, and comparison with experimental values, is reported using a gauge-including atomic orbital quantum-chemical approach. The full approximately 24 ppm shielding range is...
nmrlearner Journal club 0 08-22-2010 03:01 AM
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins. Related Articles Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins. Structure. 2010 Aug 11;18(8):923-933 Authors: Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M We introduce a procedure to determine the structures of proteins by incorporating NMR chemical shifts as structural restraints in molecular dynamics simulations. In this approach, the chemical shifts are expressed as differentiable...
nmrlearner Journal club 0 08-17-2010 03:36 AM
Methods of NMR structure refinement: molecular dynamics simulations improve the agree
Abstract The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16â??31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 Ï? torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure....
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:08 PM.


Map