[NMR paper] Using (15) N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy.
Using (15) N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy.
Related Articles Using (15) N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy.
Chembiochem. 2014 Feb 12;
Authors: Werbeck ND, Kirkpatrick J, Reinstein J, Hansen DF
Abstract
A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic...
nmrlearner
Journal club
0
02-13-2014 03:35 PM
Using Chemical Shift Perturbation to Characterise Ligand Binding
Using Chemical Shift Perturbation to Characterise Ligand Binding
Available online 21 March 2013
Publication year: 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
</br>
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during...
nmrlearner
Journal club
0
03-21-2013 02:58 PM
Accuracy and precision of proteinâ??ligand interaction kinetics determined from chemical shift titrations
Accuracy and precision of proteinâ??ligand interaction kinetics determined from chemical shift titrations
Abstract NMR-monitored chemical shift titrations for the study of weak proteinâ??ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods...
nmrlearner
Journal club
0
10-24-2012 10:28 PM
Increased precision for analysis of proteinâ??ligand dissociation constants determined from chemical shift titrations
Increased precision for analysis of proteinâ??ligand dissociation constants determined from chemical shift titrations
Abstract NMR is ideally suited for the analysis of proteinâ??protein and protein ligand interactions with dissociation constants ranging from ~2 ÎĽM to ~1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K D ) of 1:1 proteinâ??protein or proteinâ??ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K D , and nonlinear least squares...
[NMR paper] NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding
NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol.
Related Articles NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol.
Chembiochem. 2003 Sep 5;4(9):870-7
Authors: Dehner A, Furrer J, Richter K, Schuster I, Buchner J, Kessler H
Hsp90 is one of the most abundant chaperone proteins in the cytosol. In an ATP-dependent manner it plays an essential role in the folding and activation of a...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMRwiki tweet] nmrwiki: How to "calculate" #nmr chemical shift perturbation using 13C and proton shi
nmrwiki: How to "calculate" #nmr chemical shift perturbation using 13C and proton shifts?http://qa.nmrwiki.org/question/181/
nmrwiki: How to "calculate" #nmr chemical shift perturbation using 13C and proton shifts?http://qa.nmrwiki.org/question/181/
Source: NMRWiki tweets
nmrlearner
Twitter NMR
0
10-05-2010 02:04 AM
[NMR paper] NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from t
NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.
Protein Sci. 1997 Sep;6(9):1835-48
...