BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-16-2010, 04:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Corrigendum to “BEST-HNN and 2D (HN)NH experiments for rapid backbone assignment in p

Corrigendum to “BEST-HNN and 2D (HN)NH experiments for rapid backbone assignment in proteins” [J. Magn. Reson. 204 (2010) 111–117]


Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Corrected Proof, Available online 15 September 2010

Dinesh, Kumar , Subhradip, Paul , Ramakrishna V., Hosur


Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
AUTOBA: Automation of backbone assignment from HN(C)N suite of experiments
AUTOBA: Automation of backbone assignment from HN(C)N suite of experiments Abstract Development of efficient strategies and automation represent important milestones of progress in rapid structure determination efforts in proteomics research. In this context, we present here an efficient algorithm named as AUTOBA (Automatic Backbone Assignment) designed to automate the assignment protocol based on HN(C)N suite of experiments. Depending upon the spectral dispersion, the user can record 2D or 3D versions of the experiments for assignment. The algorithm uses as inputs: (i) protein primary...
nmrlearner Journal club 0 06-06-2011 12:53 AM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner Journal club 0 03-22-2011 07:32 PM
Rapid acquisition of (1) H and (19) F NMR experiments for direct and competition ligand-based screening.
Rapid acquisition of (1) H and (19) F NMR experiments for direct and competition ligand-based screening. Rapid acquisition of (1) H and (19) F NMR experiments for direct and competition ligand-based screening. Magn Reson Chem. 2011 Mar 9; Authors: Dalvit C, Gossert AD, Coutant J, Piotto M Direct and competition ligand-based NMR experiments are often used in the screening of chemical fragment libraries against a protein target due to the high relative sensitivity of NMR for protein-binding events. A plethora of NMR methods has been proposed...
nmrlearner Journal club 0 03-10-2011 03:51 PM
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 4 January 2011</br> Jie, Wen , Jihui, Wu , Pei, Zhou</br> Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H?, C?, C? and CO) for establishing sequential backbone assignment. Because most conventional 4-D...
nmrlearner Journal club 0 01-05-2011 11:03 AM
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins Abstract The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve 15N and 1HN resonances. The assignment becomes problematic when there is resonance overlap of 15Nâ??1HN cross peaks. For such residues, one cannot unambiguously link the â??leftâ?? side of the NH root to the â??rightâ?? side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a...
nmrlearner Journal club 0 12-31-2010 08:38 PM
[NMR paper] Rapid and simple approach for the NMR resonance assignment of the carbohydrate chains
Rapid and simple approach for the NMR resonance assignment of the carbohydrate chains of an intact glycoprotein. Application of gradient-enhanced natural abundance 1H-13C HSQC and HSQC-TOCSY to the alpha-subunit of human chorionic gonadotropin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Rapid and simple approach for the NMR resonance assignment of the carbohydrate chains of an intact glycoprotein. Application of gradient-enhanced natural abundance 1H-13C HSQC and HSQC-TOCSY to the alpha-subunit of...
nmrlearner Journal club 0 08-22-2010 03:29 AM
hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment i
hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment in (13C, 15N) labeled proteins Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 30 June 2010</br> Dinesh, Kumar , Jithender G, Reddy , Ramakrishna V., Hosur</br> Time-saving in data acquisition is a major thrust of NMR pulse sequence development in the context of structural proteomics research. The conventional HNCA and HN(CA)CO pulse sequences, routinely used for sequential backbone assignment, have the limitation that they cannot...
nmrlearner Journal club 0 08-16-2010 03:50 AM
HA-detected experiments for the backbone assignment of intrinsically disordered prote
Abstract We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features: HA-detection (1) enables assignment of natively unfolded proteins at any pH, i.e., it is not sensitive to rapid chemical exchange undergoing in natively unfolded proteins even at moderately high pH. (2) It allows straightforward assignment of proline-rich polypeptides without additional proline-customized experiments. (3) It offers more streamlined and less ambiguous assignment based on solely intraresidual...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:20 AM.


Map