Related ArticlesCorrelation of binding-loop internal dynamics with stability and function in potato I inhibitor family: relative contributions of Arg(50) and Arg(52) in Cucurbita maxima trypsin inhibitor-V as studied by site-directed mutagenesis and NMR spectroscopy.
Biochemistry. 2002 Jul 30;41(30):9572-9
Authors: Cai M, Gong YX, Wen L, Krishnamoorthi R
The side chains of Arg(50) and Arg(52) at positions P(6)' and P(8)', respectively, anchor the binding loop to the protein scaffold by means of hydrogen bonds in Cucurbita maxima trypsin inhibitor-V (CMTI-V), a potato I family member. Here, we have investigated the relative contributions of Arg(50) and Arg(52) to the binding-loop flexibility and stability by determining changes in structure, dynamics, and proteolytic stability as a consequence of individually mutating them into an alanine. We have compared chemical shift assignments of main-chain hydrogens and nitrogens, and (1)H-(1)H interresidue nuclear Overhauser effects (NOEs) for the two mutants with those of the wild-type protein. We have also measured NMR longitudinal and transverse relaxation rates and (15)N-(1)H NOE enhancements for all backbone and side-chain NH groups and calculated the model-free parameters for R50A-rCMTI-V and R52A-rCMTI-V. The three-dimensional structures and backbone dynamics of the protein scaffold region remain very similar for both mutants, relative to the wild-type protein. The flexibility of the binding loop is increased in both R50A- and R52A-rCMTI-V. In R52A-rCMTI-V, the mean generalized order parameter () of the P(6)-P(1) residues of the binding loop (39-44) decreases to 0.68 +/- 0.02 from 0.76 +/- 0.04 observed for the wild-type protein. However, in R50A-rCMTI-V, the flexibility of the whole binding loop increases, especially that of the P(1)'-P(3)' residues (45-47), whose value drops dramatically to 0.35 +/- 0.03 from 0.68 +/- 0.03 determined for rCMTI-V. More strikingly, S(2) values of side-chain N epsilon Hs reveal that, in the R50A mutant, removal of the R50 hydrogen bond results in the loss of the R52 hydrogen bond too, whereas in R52A, the R50 hydrogen bond remains unaffected. Kinetic data on trypsin-catalyzed hydrolysis of the reactive-site peptide bond (P(1)-P(1)') suggest that the activation free energy barrier of the reaction at 25 degrees C is reduced by 2.1 kcal/mol for R50A-rCMTI-V and by 1.5 kcal/mol for R52A-rCMTI-V, relative to rCMTI-V. Collectively, the results suggest that although both the P(6') and P(8)' anchors are required for optimal inhibitor function and stability in the potato I family, the former is essential for the existence of the latter and has greater influence on the binding-loop structure, dynamics, and stability.
NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1
NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101896j/aop/images/medium/bi-2010-01896j_0004.gif
Biochemistry
DOI: 10.1021/bi101896j
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/OhiVTgV2ZTI
More...
nmrlearner
Journal club
0
01-14-2011 01:59 AM
NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1.
NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1.
NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1.
Biochemistry. 2011 Jan 4;
Authors: Parkesh R, Disney MD, Fountain M
The NMR structure of an RNA with a copy of the 5'CUG/3'GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single...
nmrlearner
Journal club
0
01-06-2011 11:21 AM
[NMR paper] Structure, stability, and function of hDim1 investigated by NMR, circular dichroism,
Structure, stability, and function of hDim1 investigated by NMR, circular dichroism, and mutational analysis.
Related Articles Structure, stability, and function of hDim1 investigated by NMR, circular dichroism, and mutational analysis.
Biochemistry. 2003 Aug 19;42(32):9609-18
Authors: Zhang YZ, Cheng H, Gould KL, Golemis EA, Roder H
The 142 amino acid Dim1p protein is a component of the U4/U6.U5 tri-snRNP complex required for pre-mRNA splicing and interacts with multiple splicing-associated proteins. To gain further insight into the...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop bin
NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein.
Related Articles NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein.
RNA. 2002 Jan;8(1):83-96
Authors: DeJong ES, Marzluff WF, Nikonowicz EP
The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Influence of internal dynamics on accuracy of protein NMR structures: derivation of r
Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory.
Related Articles Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory.
J Mol Biol. 1999 Jan 15;285(2):727-40
Authors: Schneider TR, Brünger AT, Nilges M
In order to study the effect of internal dynamics on the accuracy of NMR structures in detail, we generated NOE distance data from a...
nmrlearner
Journal club
0
11-18-2010 07:05 PM
[NMR paper] NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding reg
NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding region mobilities of intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor (CMTI)-III of the squash family and comparison with those of counterparts of CMTI-V of the potato I family.
Related Articles NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding region mobilities of intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor (CMTI)-III of the squash family and comparison with those of counterparts of CMTI-V of the potato I family.
...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Differential modulation of binding loop flexibility and stability by Arg50 and Arg52
Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.
Biochemistry. 1996 Apr 16;35(15):4784-94
Authors: Cai M, Huang Y, Prakash O, Wen...