Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
Phys Chem Chem Phys. 2014 Jul 23;
Authors: Zhu T, Zhang JZ, He X
Abstract
In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1 WW domain. The NMR structure is then refined by using molecular dynamics simulation and the polarized protein-specific charge (PPC) model. The computationally refined structure of the Pin1 WW domain is in excellent agreement with the corresponding X-ray structure. In particular, the use of the PPC model yields a more accurate structure than that using the standard (nonpolarizable) force field. For comparison, some of the widely used empirical models for chemical shift calculations are unable to correctly describe the relationship between the particular proton chemical shift and protein structures. The AF-QM/MM method can be used as a powerful tool for protein NMR structure validation and structural flaw detection.
PMID: 25052367 [PubMed - as supplied by publisher]
[NMR paper] Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations.
Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations.
Adv Protein Chem Struct Biol. 2013;93:153-82
Authors: Deng H
Abstract
Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and...
nmrlearner
Journal club
0
09-11-2013 09:15 PM
[NMR paper] Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
J Biomol NMR. 2013 Apr 28;
Authors: Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M
Abstract
We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic...
nmrlearner
Journal club
0
04-30-2013 10:21 PM
[NMR paper] Ab initio NMR chemical-shift calculations based on the combined fragmentation method.
Ab initio NMR chemical-shift calculations based on the combined fragmentation method.
Related Articles Ab initio NMR chemical-shift calculations based on the combined fragmentation method.
Phys Chem Chem Phys. 2013 Apr 12;
Authors: Tan HJ, Bettens RP
Abstract
NMR chemical shift is a molecular property that can be computed from first principles. In this work we show that by utilizing our combined fragmentation method (CFM), one is able to accurately compute this property for small proteins. Without nonbonded interactions, the root mean...
nmrlearner
Journal club
0
04-16-2013 07:46 PM
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
Abstract The combination of the wide availability of protein backbone and side-chain NMR chemical shifts with advances in understanding of their relationship to protein structure makes these parameters useful for the assessment of structural-dynamic protein models. A new chemical shift predictor (PPM) is introduced, which is solely based on physicalâ??chemical contributions to the chemical shifts for both the protein backbone and methyl-bearing amino-acid side chains. To...
nmrlearner
Journal club
0
09-15-2012 09:04 AM
[NMR paper] Influence of chemical shift tolerances on NMR structure calculations using ARIA proto
Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data.
Related Articles Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data.
J Biomol NMR. 2005 Jan;31(1):21-34
Authors: Fossi M, Linge J, Labudde D, Leitner D, Nilges M, Oschkinat H
Large-scale protein structure determination by NMR via automatic assignment of NOESY spectra requires the adjustment of several parameters for optimal performance. Among those are the chemical shift...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analy
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid.
Related Articles Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid.
Biochem Biophys Res Commun. 2010 Oct 11;
Authors: Shi P, Xi Z, Wang H, Shi C, Xiong Y, Tian C
SH3 is a ubiquitous domain mediating protein-protein interactions....
nmrlearner
Journal club
0
10-16-2010 03:56 PM
[NMR paper] Angular variances for internal bond rotations of side chains in GXG-based tripeptides
Angular variances for internal bond rotations of side chains in GXG-based tripeptides derived from (13)C-NMR relaxation measurements: Implications to protein folding.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Angular variances for internal bond rotations of side chains in GXG-based tripeptides derived from (13)C-NMR relaxation measurements: Implications to protein folding.
Biopolymers. 1999 Apr 15;49(5):373-383
Authors: Mikhailov DV,...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
CheckShift: automatic correction of inconsistent chemical shift referencing
CheckShift: automatic correction of inconsistent chemical shift referencing
Simon W. Ginzinger, Fabian Gerick, Murray Coles and Volker Heun
Journal of Biomolecular NMR; 2007; 39(3); pp 223-227
Abstract:
The construction of a consistent protein chemical shift database is an important step toward making more extensive use of this data in structural studies. Unfortunately, progress in this direction has been hampered by the quality of the available data, particularly with respect to chemical shift referencing, which is often either inaccurate or inconsistently annotated. Preprocessing of...