BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default CORCEMA refinement of the bound ligand conformation within the protein binding pocket

CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.

Related Articles CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.

J Magn Reson. 2004 May;168(1):36-45

Authors: Jayalakshmi V, Rama Krishna N

We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR intensity data on reversibly forming weak complexes. In this approach, the global minimum for the bound-ligand conformation is obtained by a hybrid structure refinement method involving CORCEMA calculation of intensities and simulated annealing optimization of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints and the NOE R-factor as the pseudo-energy function to be minimized. This method is illustrated using simulated STD data sets for typical carbohydrate and peptide ligands. Our procedure also allows for the optimization of side chain torsion angles of protein residues within the binding pocket. This procedure is useful in refining and improving initial models based on crystallography or computer docking or other algorithms to generate models for the bound ligand (e.g., a lead compound) within the protein binding pocket compatible with solution STD-NMR data. This method may facilitate structure-based drug design efforts.

PMID: 15082247 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Refinement of the conformation of UDP-galactose bound to galactosyltransferase using
Refinement of the conformation of UDP-galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization. Related Articles Refinement of the conformation of UDP-galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization. J Am Chem Soc. 2004 Jul 21;126(28):8610-1 Authors: Jayalakshmi V, Biet T, Peters T, Krishna NR The STD NMR technique has originally been described as a tool for screening large compound libraries to identify the lead compounds that are specific to...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR structure of the thromboxane A2 receptor ligand recognition pocket.
NMR structure of the thromboxane A2 receptor ligand recognition pocket. Related Articles NMR structure of the thromboxane A2 receptor ligand recognition pocket. Eur J Biochem. 2004 Jul;271(14):3006-16 Authors: Ruan KH, Wu J, So SP, Jenkins LA, Ruan CH To overcome the difficulty of characterizing the structures of the extracellular loops (eLPs) of G protein-coupled receptors (GPCRs) other than rhodopsin, we have explored a strategy to generate a three-dimensional structural model for a GPCR, the thromboxane A(2) receptor. This three-dimensional...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein r
Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. Related Articles Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. Biochemistry. 2001 Mar 20;40(11):3282-8 Authors: Verhoeven MA, Creemers AF, Bovee-Geurts PH, De Grip WJ, Lugtenburg J, de Groot HJ ...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhod
Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Related Articles Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Biochemistry. 2000 Aug 22;39(33):10066-71 Authors: Helmle M, Patzelt H, Ockenfels A, Gärtner W, Oesterhelt D, Bechinger B The bacterial proton pump bacteriorhodopsin (BR) is a 26.5 kDa seven-transmembrane helical protein. Several...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry. 1994 Jul 26;33(29):8651-61 Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] NMR studies of [U-13C]cyclosporin A bound to cyclophilin: bound conformation and port
NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Related Articles NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry. 1991 Jul 2;30(26):6574-83 Authors: Fesik SW, Gampe RT, Eaton HL, Gemmecker G, Olejniczak ET, Neri P, Holzman TF, Egan DA, Edalji R, Simmer R Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] NMR studies of [U-13C]cyclosporin A bound to cyclophilin: bound conformation and port
NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Related Articles NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry. 1991 Jul 2;30(26):6574-83 Authors: Fesik SW, Gampe RT, Eaton HL, Gemmecker G, Olejniczak ET, Neri P, Holzman TF, Egan DA, Edalji R, Simmer R Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] A branch and bound algorithm for protein structure refinement from sparse NMR data se
A branch and bound algorithm for protein structure refinement from sparse NMR data sets. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A branch and bound algorithm for protein structure refinement from sparse NMR data sets. J Mol Biol. 1999 Jan 29;285(4):1691-710 Authors: Standley DM, Eyrich VA, Felts AK, Friesner RA, McDermott AE We describe new methods for predicting protein tertiary structures to low resolution given the specification of secondary structure and a...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:45 AM.


Map