BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-24-2021, 05:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,778
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation

Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation


Angewandte Chemie International Edition, Accepted Article.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Multi-Quantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains.
Multi-Quantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Multi-Quantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. J Phys Chem Lett. 2020 Jun 16;: Authors: Karunanithy G, Reinstein J, Hansen...
nmrlearner Journal club 0 06-18-2020 03:07 AM
3-O-Methyl- d -glucose mutarotation and proton exchange rates assessed by 13 C, 1 H NMR and by chemical exchange saturation transfer and spin lock measurements
3-O-Methyl- d -glucose mutarotation and proton exchange rates assessed by 13 C, 1 H NMR and by chemical exchange saturation transfer and spin lock measurements Abstract 3-O-Methyl-d-glucose (3OMG) was recently suggested as an agent to image tumors using chemical exchange saturation transfer (CEST) MRI. To characterize the properties of 3OMG in solution, the anomeric equilibrium and the mutarotation rates of 3OMG were studied by 1H and 13C NMR. This information is essential in designing the in vivo CEST experiments. At room temperature, the ratio...
nmrlearner Journal club 0 11-25-2018 06:02 AM
Binding and Energetics of Electron Transfer betweenan Artificial Four-Helix Mn-Protein and Reaction Centers from Rhodobacter sphaeroides
Binding and Energetics of Electron Transfer betweenan Artificial Four-Helix Mn-Protein and Reaction Centers from Rhodobacter sphaeroides http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00978/20171128/images/medium/bi-2017-00978p_0011.gif Biochemistry DOI: 10.1021/acs.biochem.7b00978 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/BzbxrJbQOg0 More...
nmrlearner Journal club 0 11-29-2017 09:22 AM
Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization
From The DNP-NMR Blog: Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization Gloggler, S., et al., Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization. Chem Commun (Camb), 2016. 52(3): p. 605-8. http://www.ncbi.nlm.nih.gov/pubmed/26553609
nmrlearner News from NMR blogs 0 03-14-2016 11:01 PM
[NMR paper] Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST)
Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST) Publication date: Available online 7 May 2015 Source:Journal of Magnetic Resonance</br> Author(s): Joshua I. Friedman , Ding Xia , Ravinder R. Regatte , Alexej Jerschow</br> Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange...
nmrlearner Journal club 0 05-10-2015 07:49 PM
[NMR paper] Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP) Publication date: Available online 23 March 2015 Source:Journal of Magnetic Resonance</br> Author(s): David S. Snyder , Mihaela Chantova , Saadia Chaudhry</br> NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained...
nmrlearner Journal club 0 03-25-2015 10:15 AM
[NMR paper] Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts.
Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts. Related Articles Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts. Chem Commun (Camb). 2014 Mar 3; Authors: Vicari C, Saraiva IH, Maglio O, Nastri F, Pavone V, Louro RO, Lombardi A Abstract An empirical equation, describing the relationship between the porphyrin methyl hyperfine shifts and the position of the axial ligand(s), has been applied to an artificial heme-protein in order to...
nmrlearner Journal club 0 03-04-2014 06:37 PM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Angew Chem Int Ed Engl. 2013 Feb 28; Authors: Vallurupalli P, Kay LE Abstract Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner Journal club 0 03-02-2013 11:45 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:12 PM.


Map