BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-18-2020, 10:53 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,574
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational Stability Study of a Therapeutic Peptide Plectasin Using Molecular Dynamics Simulations in Combination with NMR.

Conformational Stability Study of a Therapeutic Peptide Plectasin Using Molecular Dynamics Simulations in Combination with NMR.

Related Articles Conformational Stability Study of a Therapeutic Peptide Plectasin Using Molecular Dynamics Simulations in Combination with NMR.

J Phys Chem B. 2019 06 13;123(23):4867-4877

Authors: Indrakumar S, Zalar M, Pohl C, Nørgaard A, Streicher W, Harris P, Golovanov AP, Peters GHJ

Abstract
Plectasin is a small, cysteine-rich peptide antibiotic which belongs to the class of antimicrobial peptides and has potential antibacterial activity against various Gram-positive bacteria. In the current study, the effect of pH and ionic strength (NaCl) on the conformational stability of plectasin variants has been investigated. At all physiochemical conditions, peptide secondary structures are intact throughout simulations. However, flexibility increases with pH because of the change in electrostatics around the distinct anionic tetrapeptide (9-12) stretch. Furthermore, plectasin interactions with NaCl were measured by determining the preferential interaction coefficients, ?23. Generally, wild-type plectasin has higher preference for sodium ions as 9ASP is mutated in other variants. Overall, the ?23 trend with pH for the two salt conditions remain the same for all variants predominately having accumulation of sodium ions around 10GLU and 12ASP. Insignificant changes in the overall peptide conformational stability are in agreement with the fact that plectasin has three cystines. Thermodynamic integration molecular dynamics simulations supplemented with nuclear magnetic resonance were employed to determine the degree of involvement of three different cystines to the overall structural integrity of the peptide. Both methods show the same order of cystine reduction and complete unfolding is observed only upon reduction of all cystines.


PMID: 31099578 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations.
Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Biochemistry. 2018 Feb 07;: Authors: Solomentsev G, Diehl C, Akke M Abstract FKBP12 (FK506 binding protein 12 kDa) is an important drug target that attracts a great deal of interest as a model system for computational drug design and studies on the role of protein dynamics in ligand binding. NMR...
nmrlearner Journal club 0 02-08-2018 04:32 PM
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00386/20161201/images/medium/bi-2016-00386h_0007.gif Biochemistry DOI: 10.1021/acs.biochem.6b00386 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/ugnwt-nfPl4 More...
nmrlearner Journal club 0 12-02-2016 07:45 AM
[NMR paper] Probing the Interaction between cHAVc3 Peptide and the EC1 Domain of E-cadherin using NMR and Molecular Dynamics Simulations.
Probing the Interaction between cHAVc3 Peptide and the EC1 Domain of E-cadherin using NMR and Molecular Dynamics Simulations. Related Articles Probing the Interaction between cHAVc3 Peptide and the EC1 Domain of E-cadherin using NMR and Molecular Dynamics Simulations. J Biomol Struct Dyn. 2016 Jan 5;:1-48 Authors: Alaofi A, Farokhi E, Prasasty VD, Anbanandam A, Kuczera K, Siahaan TJ Abstract The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic...
nmrlearner Journal club 0 01-07-2016 08:36 AM
[NMR paper] Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR.
Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR. J Phys Chem B. 2014 May 1;118(17):4461-70 ...
nmrlearner Journal club 0 05-13-2015 12:28 AM
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochim Biophys Acta. 2011 Aug;1808(8):2019-30 Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A Abstract One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner Journal club 0 08-19-2011 02:56 PM
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon Journal of the American Chemical Society DOI: 10.1021/ja204315n http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
nmrlearner Journal club 0 07-09-2011 07:11 AM
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
[NMR paper] Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Related Articles Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J. 2005 Sep;89(3):2113-20 Authors: Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and...
nmrlearner Journal club 0 12-01-2010 06:56 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:51 AM.


Map