Related ArticlesConformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin: 15N CPMAS NMR of D85N/T170C membranes.
FEBS J. 2005 May;272(9):2152-64
Authors: Mason AJ, Turner GJ, Glaubitz C
bR, N-like and O-like intermediate states of [15N]methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by controlling the pH of the preparations. 15N cross polarization and magic angle sample spinning (CPMAS) NMR spectroscopy allowed resolution of seven out of nine resonances in the bR-state. It was possible to assign some of the observed resonances by using 13C/15N rotational echo double resonance (REDOR) NMR and Mn2+ quenching as well as D2O exchange, which helps to identify conformational changes after the bacteriorhodopsin Schiff base reprotonation. The significant differences in chemical shifts and linewidths detected for some of the resonances in N- and O-like samples indicate changes in conformation, structural heterogeneity or altered molecular dynamics in parts of the protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Biophys J. 2011 Aug 3;101(3):L23-L25
Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V
Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner
Journal club
0
08-03-2011 12:00 PM
Conformational Study of 9-Dehydro-9-Trifluoromethyl Cinchona Alkaloids via 19F NMR Spectroscopy: Emergence of Trifluoromethyl Moiety as a Conformational Stabilizer and a Probe
Conformational Study of 9-Dehydro-9-Trifluoromethyl Cinchona Alkaloids via 19F NMR Spectroscopy: Emergence of Trifluoromethyl Moiety as a Conformational Stabilizer and a Probe
G. K. Surya Prakash, Fang Wang, Chuanfa Ni, Jingguo Shen, Ralf Haiges, Andrei K. Yudin, Thomas Mathew and George A. Olah
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202373d/aop/images/medium/ja-2011-02373d_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja202373d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
06-14-2011 02:30 AM
[NMR paper] Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
Related Articles Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
J Mol Biol. 2002 Mar 22;317(2):263-78
Authors: Dayie KT, Brodsky AS, Williamson JR
Binding of the HIV tat protein to the TAR (transactivating response region) RNA element activates transcription of the HIV viral genome. The complex of TAR with argininamide serves as a model for the RNA conformation in the tat-TAR complex. The dynamics of the HIV-2 TAR-argininamide...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Investigating the conformational coupling between the transmembrane and cytoplasmic d
Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study.
Related Articles Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study.
FEBS Lett. 2001 Sep 21;505(3):431-5
Authors: Mousson F, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM
PMP1 is a 38-residue single-spanning membrane protein whose C-terminal cytoplasmic domain, Y25-F38, is highly positively...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodo
Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line.
Related Articles Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line.
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):487-92
Authors: Eilers M, Reeves PJ, Ying W, Khorana HG, Smith SO
The apoprotein corresponding to the mammalian photoreceptor rhodopsin has been...
nmrlearner
Journal club
0
11-18-2010 07:05 PM
[NMR paper] Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-pro
Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.
Biochemistry. 1999 Jun 1;38(22):7195-9
Authors: Creemers AF, Klaassen CH, Bovee-Geurts PH, Kelle R, Kragl U, Raap J, de Grip WJ, Lugtenburg J, de Groot HJ
Using the baculovirus/Sf9 cell expression system, we...