BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-01-2020, 03:54 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.

Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.

Related Articles Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.

J Biomol NMR. 2019 Sep;73(8-9):509-518

Authors: Ding J, Swain M, Yu P, Stagno JR, Wang YX

Abstract
Riboswitches are structured*cis-regulators mainly found in the untranslated regions of messenger RNA. The aptamer domain of a riboswitch serves as a sensor for its ligand, the binding of which triggers conformational changes that regulate the behavior of its expression platform. As a model system for understanding riboswitch structures and functions, the*add*adenine riboswitch has been studied extensively. However, there is a need for further investigation of the conformational dynamics of the aptamer in light of the recent real-time crystallographic study at room temperature (RT) using an X-ray free electron laser (XFEL) and femtosecond X-ray crystallography (SFX). Herein, we investigate the conformational motions of the*add*adenine riboswitch aptamer domain, in the presence or absence of adenine, using nuclear magnetic resonance relaxation measurements and analysis of RT atomic displacement factors (B-factors). In the absence of ligand, the P1 duplex undergoes a fast exchange where the overall*molecule exhibits a motion at*kex ~ 319*s-1, based on imino signals. In the presence of ligand, the P1 duplex adopts a highly ordered conformation, with*kex~ 83*s-1, similar to the global motion of the molecule, excluding the loops and binding pocket, at 84*s-1. The*µs-ms*motions in both the apo and bound states are consistent with RT B-factors. Reduced spatial atomic fluctuation, ~ 50%, in P1 upon ligand binding coincides with significantly attenuated temporal dynamic exchanges. The binding pocket is structured in the absence or presence of ligand, as evidenced by relatively low and similar RT B-factors. Therefore, despite the dramatic rearrangement of the binding pocket, those residues exhibit similar spatial thermal fluctuation before and after binding.


PMID: 31606878 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] X-ray Emission Spectroscopy as an in Situ Diagnostic Tool for X-ray Crystallography of Metalloproteins Using an X-ray Free-Electron Laser
X-ray Emission Spectroscopy as an in Situ Diagnostic Tool for X-ray Crystallography of Metalloproteins Using an X-ray Free-Electron Laser https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00325/20180628/images/medium/bi-2018-00325f_0007.gif Biochemistry DOI: 10.1021/acs.biochem.8b00325 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/h0rNnSSvyKY More...
nmrlearner Journal club 0 06-29-2018 08:31 AM
Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer
Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer Abstract Using NMR magnetization transfer experiments, the hydrogen exchange rate constants (k ex ) of the DNA imino protons in the cocaine-binding aptamer have been determined for the free, cocaine-bound, and quinine-bound states. The secondary structure of the cocaine-binding aptamer is composed of three stems built around a three-way junction. In the free aptamer the slowest...
nmrlearner Journal club 0 05-06-2017 03:44 PM
[NMR paper] Conformational flexibility and loss of structural rigidity for a model hexapeptide, GRGDTP: 1H-NMR and molecular dynamics studies.
Conformational flexibility and loss of structural rigidity for a model hexapeptide, GRGDTP: 1H-NMR and molecular dynamics studies. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Conformational flexibility and loss of structural rigidity for a model hexapeptide, GRGDTP: 1H-NMR and molecular dynamics studies. Biopolymers. 2013 Jul;99(7):460-71 Authors: Kulkarni AK, Ojha RP Abstract The NMR and molecular dynamics methods are...
nmrlearner Journal club 0 04-23-2016 09:24 PM
[NMR paper] NMR observation of HIV-1 gp120 conformational flexibility resulting from V3 truncation.
NMR observation of HIV-1 gp120 conformational flexibility resulting from V3 truncation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR observation of HIV-1 gp120 conformational flexibility resulting from V3 truncation. FEBS J. 2014 Jul;281(13):3019-31 Authors: Moseri A, Schnur E, Noah E, Zherdev Y, Kessler N, Singhal Sinha E, Abayev M, Naider F, Scherf T, Anglister J Abstract The envelope spike of HIV-1,...
nmrlearner Journal club 0 09-06-2014 08:46 PM
[NMR paper] Structure and Backbone Dynamics of vanadate-bound PRL-3: Comparison of 15N NMR Relaxation Profiles of free and vanadate-bound PRL-3.
Structure and Backbone Dynamics of vanadate-bound PRL-3: Comparison of 15N NMR Relaxation Profiles of free and vanadate-bound PRL-3. Related Articles Structure and Backbone Dynamics of vanadate-bound PRL-3: Comparison of 15N NMR Relaxation Profiles of free and vanadate-bound PRL-3. Biochemistry. 2014 Jul 1; Authors: Jeong KW, Kang DI, Lee E, Shin A, Jin B, Park YG, Lee CK, Kim EH, Jeon YH, Kim EE, Kim Y Abstract Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic...
nmrlearner Journal club 0 07-02-2014 02:37 PM
NMR Studies of the free Energy Landscape of Intrinsically Disordered Proteins in their free and Bound Forms
NMR Studies of the free Energy Landscape of Intrinsically Disordered Proteins in their free and Bound Forms Publication date: 28 January 2014 Source:Biophysical Journal, Volume 106, Issue 2, Supplement 1</br> Author(s): Martin Blackledge</br> </br></br> </br></br> More...
nmrlearner Journal club 0 01-29-2014 12:50 AM
Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer
From the The DNP-NMR Blog: Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer This is not an article directly related to DNP spectroscopy. However, it shows the tremendous progress made in the development of high-frequency, high-power sources that can be utilized for high-field EPR and eventually DNP experiments. <div>Edwards, D.T., et al., Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer. Phys. Chem. Chem. Phys., 2013.
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales.
NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales. NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales. Biochemistry. 2011 Mar 9; Authors: Salmon L, Bouvignies G, Markwick PR, Blackledge M A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years novel NMR-based techniques have emerged that provide hitherto inaccessible...
nmrlearner Journal club 0 03-11-2011 03:14 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:40 PM.


Map