BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-29-2020, 07:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational Entropy from Mobile Bond Vectors in Proteins: A Viewpoint that Unifies NMR-Relaxation-Theory and Molecular-Dynamics-Simulation Approaches.

Conformational Entropy from Mobile Bond Vectors in Proteins: A Viewpoint that Unifies NMR-Relaxation-Theory and Molecular-Dynamics-Simulation Approaches.

Related Articles Conformational Entropy from Mobile Bond Vectors in Proteins: A Viewpoint that Unifies NMR-Relaxation-Theory and Molecular-Dynamics-Simulation Approaches.

J Phys Chem B. 2020 Sep 26;:

Authors: Mendelman N, Zerbetto M, Buck M, Meirovitch E


Abstract
A new method for determining conformational entropy in proteins is reported. Proteins prevail as conformational ensembles, p ? exp(-u). By selecting a bond-vector (e.g., N-H) as conformation representative, MD simulations can provide (relative to a reference structure) p as approximate Boltzmann probability density and u as N-H Potential of Mean Force (POMF). The latter is as accurate as the force-field but statistical in character; this limits the insight it can provide, and its utilization. Conformational entropy is given exclusively by u. Deriving it from POMFs renders it accurate but statistical in character. Previously we devised explicit (i.e., analytical but not exact) potentials made of Wigner functions, DL0K, with L
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Conformational Entropy from Restricted Bond-Vector Motion in Proteins: The Symmetry of the Local Restrictions and Relation to NMR Relaxation.
Conformational Entropy from Restricted Bond-Vector Motion in Proteins: The Symmetry of the Local Restrictions and Relation to NMR Relaxation. Related Articles Conformational Entropy from Restricted Bond-Vector Motion in Proteins: The Symmetry of the Local Restrictions and Relation to NMR Relaxation. J Phys Chem B. 2020 May 01;: Authors: Mendelman N, Meirovitch E Abstract Locally-mobile bond-vectors contribute to the conformational entropy of the protein, given by Sk = S/k = -? (Peq ln Peq) d? - ln ? d?. The quantity Peq =...
nmrlearner Journal club 0 05-03-2020 02:46 PM
[NMR paper] Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations.
Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Biochemistry. 2018 Feb 07;: Authors: Solomentsev G, Diehl C, Akke M Abstract FKBP12 (FK506 binding protein 12 kDa) is an important drug target that attracts a great deal of interest as a model system for computational drug design and studies on the role of protein dynamics in ligand binding. NMR...
nmrlearner Journal club 0 02-08-2018 04:32 PM
[NMR paper] Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation.
Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. Chembiochem. 2017 Feb 16;18(4):396-401 ...
nmrlearner Journal club 0 07-05-2017 10:27 AM
[NMR paper] (15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach.
(15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach. Related Articles (15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach. J Phys Chem B. 2017 Mar 10;: Authors: Zerbetto M, Meirovitch E Abstract We report on a new method for determining function-related conformational entropy changes in proteins. Plexin-B1 RBD dimerization serves as example, and...
nmrlearner Journal club 0 03-11-2017 05:12 PM
[NMR paper] Conformational Entropy from NMR Relaxation in Proteins: the SRLS Perspective.
Conformational Entropy from NMR Relaxation in Proteins: the SRLS Perspective. Related Articles Conformational Entropy from NMR Relaxation in Proteins: the SRLS Perspective. J Phys Chem B. 2017 Jan 06;: Authors: Tchaicheeyan O, Meirovitch E Abstract Conformational entropy changes associated with bond-vector motions in proteins contribute to the free energy of ligand binding. To derive such contributions we apply the slowly relaxing local structure (SRLS) approach to NMR relaxation from (15)N-H bonds or C-CDH2 moieties of several...
nmrlearner Journal club 0 01-07-2017 01:27 PM
[NMR paper] Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation.
Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. Related Articles Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. J Phys Chem Lett. 2016 Jun 14; Authors: Salvi N, Abyzov A, Blackledge M Abstract Intrinsically disordered proteins (IDPs) access highly diverse ensembles of conformations in their functional states. Although this plasticity is essential to their function, little is known about the dynamics underlying...
nmrlearner Journal club 0 06-15-2016 11:12 PM
[NMR paper] Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation.
Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. Adv Exp Med Biol. 2015;842:217-30 Authors: Zhang Y, Yamaguchi T, Satoh T, Yagi-Utsumi M, Kamiya Y,...
nmrlearner Journal club 0 05-02-2015 09:41 PM
[NMR paper] Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins.
Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins. Related Articles Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins. Chemphyschem. 2001 Sep 17;2(8-9):539-43 Authors: Deschamps M, Bodenhausen G Abstract Cross correlations between the fluctuations of dipolar (13) C(?) -(1) H(?) interactions yield information about the relative orientation of successive (13) C(?) -(1) H(?) bond vectors...
nmrlearner Journal club 0 05-22-2013 04:43 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:30 PM.


Map