BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-06-2011, 10:54 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.

Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.

Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.

Proteins. 2011 Feb 16;

Authors: Xu X, Ishima R, Ames JB

Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca(2+) -induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca(2+) -myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on (15) N-labeled recoverin to probe main chain conformational dynamics. (15) N NMR relaxation data suggest that Ca(2+) -free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca(2+) levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca(2+) -dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca(2+) saturated extruded state (R): T I R. The first step is a fast conformational equilibrium ([T]/[i] < 100) on the millisecond time scale (?(ex) ?? < 1). The final step (I R) is much slower (?(ex) ?? > 1). The main chain structure of I is similar in part to the structure of half-saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T I may transiently increase the exposure of Ca(2+) -binding sites to initiate Ca(2+) binding that drives extrusion of the myristoyl group during I R. Proteins 2011; © 2011 Wiley-Liss, Inc.

PMID: 21465563 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja210711v http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner Journal club 0 02-03-2012 09:50 AM
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data Yi Xue, Joshua M. Ward, Tairan Yuwen, Ivan S. Podkorytov and Nikolai R. Skrynnikov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206442c/aop/images/medium/ja-2011-06442c_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja206442c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NvRRKHU2H3k
nmrlearner Journal club 0 01-28-2012 05:27 AM
[NMR paper] Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. Related Articles Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc. 2005 Sep 7;127(35):12291-305 Authors: Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM Magic-angle spinning...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR chemical shift and relaxation measurements provide evidence for the coupled foldi
NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Related Articles NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Nucleic Acids Res. 2005;33(7):2061-77 Authors: Vise PD, Baral B, Latos AJ, Daughdrill GW The interaction between the acidic transactivation domain of the human tumor suppressor protein p53 (p53TAD) and the 70 kDa subunit of human replication protein A (hRPA70)...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Folding, conformational changes, and dynamics of cytochromes C probed by NMR spectros
Folding, conformational changes, and dynamics of cytochromes C probed by NMR spectroscopy. Related Articles Folding, conformational changes, and dynamics of cytochromes C probed by NMR spectroscopy. Inorg Chem. 2004 Dec 13;43(25):7934-44 Authors: Bren KL, Kellogg JA, Kaur R, Wen X NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Slow internal dynamics in proteins: application of NMR relaxation dispersion spectros
Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. Related Articles Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2002 Feb 20;124(7):1443-51 Authors: Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were...
nmrlearner Journal club 0 11-24-2010 08:49 PM
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membra
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Related Articles Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protein Sci. 2010 Nov 15; Authors: Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C Site-specific (19)F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one dimensional (19)F spectra and T(1), T(2) relaxation data were acquired...
nmrlearner Journal club 0 11-17-2010 05:49 PM
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples Patrik Lundström, D. Flemming Hansen and Lewis E. Kay Journal of Biomolecular NMR; 2008; 42(1); pp 35 - 47 Abstract: Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon...
Abe Journal club 0 09-21-2008 11:36 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:14 AM.


Map