BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-19-2012, 10:30 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational distributions of denatured and unstructured proteins are similar to those of 20 Ã? 20 blocked dipeptides

Conformational distributions of denatured and unstructured proteins are similar to those of 20 Ã? 20 blocked dipeptides


Abstract Understanding intrinsic conformational preferences of amino-acids in unfolded proteins is important for elucidating the underlying principles of their stability and re-folding on biological timescales. Here, to investigate the neighbor interaction effects on the conformational propensities of amino-acids, we carried out 1H NMR experiments for a comprehensive set of blocked dipeptides and measured the scalar coupling constants between alpha protons and amide protons as well as their chemical shifts. Detailed inspection of these NMR properties shows that, irrespective of amino-acid side-chain properties, the distributions of the measured coupling constants and chemical shifts of the dipeptides are comparatively narrow, indicating small variances of their conformation distributions. They are further compared with those of blocked amino-acids (Acâ??Xâ??NHMe), oligopeptides (Acâ??GGXGGâ??NH2), and native (lysozyme), denatured (lysozyme and outer membrane protein X from Escherichia coli), unstructured (Domain 2 of the protein 5A of Hepatitis C virus), and intrinsically disordered (hNlg3cyt: intracellular domain of human NL3) proteins. These comparative investigations suggest that the conformational preferences and local solvation environments of the blocked dipeptides are quite similar to not only those of other short oligopeptides but also those of denatured and natively unfolded proteins.

  • Content Type Journal Article
  • Category Article
  • Pages 1-17
  • DOI 10.1007/s10858-012-9618-5
  • Authors
    • Kwang-Im Oh, Department of Chemistry, Korea University, Seoul, 136-701 Korea
    • Young-Sang Jung, Korea Basic Science Institute, Seoul, 136-713 Korea
    • Geum-Sook Hwang, Korea Basic Science Institute, Seoul, 136-713 Korea
    • Minhaeng Cho, Department of Chemistry, Korea University, Seoul, 136-701 Korea


Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 215</br> Claudio Luchinat, Malini Nagulapalli, Giacomo Parigi, Luca Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 30 December 2011</br> Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner Journal club 0 12-31-2011 10:40 AM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner Journal club 0 03-22-2011 07:32 PM
[NMR paper] Probing site-specific conformational distributions in protein folding with solid-stat
Probing site-specific conformational distributions in protein folding with solid-state NMR. Related Articles Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3284-9 Authors: Havlin RH, Tycko R We demonstrate an experimental approach to structural studies of unfolded and partially folded proteins in which conformational distributions are probed at a site-specific level by 2D solid-state 13C NMR spectroscopy of glassy frozen solutions. Experiments on chemical...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.
NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Related Articles NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J. 2005 Mar;88(3):2030-7 Authors: Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder,...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Solid state NMR measurements of conformation and conformational distributions in the
Solid state NMR measurements of conformation and conformational distributions in the membrane-bound HIV-1 fusion peptide. Related Articles Solid state NMR measurements of conformation and conformational distributions in the membrane-bound HIV-1 fusion peptide. J Mol Graph Model. 2001;19(1):129-35 Authors: Yang J, Parkanzky PD, Khunte BA, Canlas CG, Yang R, Gabrys CM, Weliky DP The solid state NMR lineshape of a protein backbone carbonyl nucleus is a general diagnostic of the local conformational distribution in the vicinity of that nucleus. In...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR struc
Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Related Articles Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Biopolymers. 1990 Dec;29(14):1807-22 Authors: Kominos D, Bassolino DA, Levy RM, Pardi A The side-chain conformations have been analyzed in the antimicrobial peptide, Neutrophil Peptide-5 (NP-5), whose structure was independently generated from nmr-derived distance constraints using a distance geometry algorithm. The side-chain and peptide...
nmrlearner Journal club 0 08-21-2010 11:04 PM
[NMR paper] Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen
Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy. J Mol Biol. 1999 May 14;288(4):705-23 Authors: Hennig M, Bermel W, Spencer A, Dobson CM, Smith LJ, Schwalbe H Using a 13C and...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:04 PM.


Map