Conformational dependence of 13C shielding and coupling constants for methionine
Abstract Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of 3 J CSCC, 3 J CSCH, and the isotropic shielding, Ï?iso. Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-13C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, 3 J CSCC/3 J COCC ~ 0.7. It is further demonstrated that the 3 J CSCH coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of δ13Cε. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large ~100° Ï?3 values. The utility of the δ13Cε as a basis for estimating the gauche/trans ratio for Ï?3 is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are discussed.
Content Type Journal Article
DOI 10.1007/s10858-010-9436-6
Authors
Glenn L. Butterfoss, The Courant Institute of Mathematical Sciences and the Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
Eugene F. DeRose, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Scott A. Gabel, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Lalith Perera, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Joseph M. Krahn, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Geoffrey A. Mueller, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Xunhai Zheng, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Robert E. London, Laboratory of Structural Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, MR-01, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
[NMR paper] The (17)O-NMR shielding range and shielding time scale and detection of discrete hydr
The (17)O-NMR shielding range and shielding time scale and detection of discrete hydrogen-bonded conformational states in peptides.
Related Articles The (17)O-NMR shielding range and shielding time scale and detection of discrete hydrogen-bonded conformational states in peptides.
Biopolymers. 2001 Sep;59(3):125-30
Authors: Gerothanassis IP
The (17)O-NMR shielding range and shielding time scale due to hydrogen-bonding interactions in peptides are critically evaluated relative to those of (1)H-NMR. Furthermore, the assumptions and conclusions in...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] The impact of direct refinement against three-bond HN-C alpha H coupling constants on
The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR.
Related Articles The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR.
J Magn Reson B. 1994 May;104(1):99-103
Authors: Garrett DS, Kuszewski J, Hancock TJ, Lodi PJ, Vuister GW, Gronenborn AM, Clore GM
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] The impact of direct refinement against three-bond HN-C alpha H coupling constants on
The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR.
Related Articles The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR.
J Magn Reson B. 1994 May;104(1):99-103
Authors: Garrett DS, Kuszewski J, Hancock TJ, Lodi PJ, Vuister GW, Gronenborn AM, Clore GM
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[U. of Ottawa NMR Facility Blog] E.COSY and the Relative Signs of Coupling Constants
E.COSY and the Relative Signs of Coupling Constants
Spin-spin coupling constants can have values greater than or less than zero. The absolute sign of the coupling constants cannot be discerned from the simple examination of a 1H NMR spectrum. The E.COSY1 (Exclusive COrrelation SpectroscopY) technique is one method which can be used to determine the relative signs of coupling constants. E.COSY is a phase sensitive COSY variant which produces off-diagonal signals showing only the active coupling (i.e. the coupling directly responsible for the cross-peak) as 2x2 antiphase square tetrads...