BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 08:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,786
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational changes of bacteriorhodopsin along the proton-conduction chain as stud

Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator.

Related Articles Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator.

Biophys J. 1999 Sep;77(3):1577-84

Authors: Tanio M, Tuzi S, Yamaguchi S, Kawaminami R, Naito A, Needleman R, Lanyi JK, Saitô H

We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).

PMID: 10465768 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Recombinant A22Gâ??B31R-human insulin. A22 addition introduces conformational mobility in B chain C-terminus
Recombinant A22Gâ??B31R-human insulin. A22 addition introduces conformational mobility in B chain C-terminus Recombinant A22Gâ??B31R-human insulin. A22 addition introduces conformational mobility in B chain C-terminus Content Type Journal Article Category NMR structure note Pages 1-6 DOI 10.1007/s10858-012-9612-y Authors
nmrlearner Journal club 0 02-18-2012 10:58 AM
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins Abstract NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional -proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across...
nmrlearner Journal club 0 12-05-2011 04:07 AM
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel Fanghao Hu, Klaus Schmidt-Rohr and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2081185/aop/images/medium/ja-2011-081185_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja2081185 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/C3pPoB5_PR8
nmrlearner Journal club 0 10-22-2011 10:16 AM
Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR.
Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR. Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR. Solid State Nucl Magn Reson. 2011 Mar 23; Authors: Mao Y, Jeong M, Wang T, Ba Y Antifreeze proteins (AFPs) provide survival mechanism for species living in subzero environments by lowering the freezing points of their...
nmrlearner Journal club 0 04-08-2011 10:00 AM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Biochemistry. 2001 Jun 5;40(22):6559-69 Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Mechanisms of proton conduction and gating in influenza m2 proton channels from solid
Mechanisms of proton conduction and gating in influenza m2 proton channels from solid-state NMR. Related Articles Mechanisms of proton conduction and gating in influenza m2 proton channels from solid-state NMR. Science. 2010 Oct 22;330(6003):505-8 Authors: Hu F, Luo W, Hong M The M2 protein of influenza viruses forms an acid-activated tetrameric proton channel. We used solid-state nuclear magnetic resonance spectroscopy to determine the structure and functional dynamics of the pH-sensing and proton-selective histidine-37 in M2 bound to a...
nmrlearner Journal club 0 10-23-2010 05:48 PM
[NMR paper] NMR analysis of main-chain conformational preferences in an unfolded fibronectin-bind
NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. J Mol Biol. 1997 Nov 28;274(2):152-9 Authors: Penkett CJ, Redfield C, Dodd I, Hubbard J, McBay DL, Mossakowska DE, Smith RA, Dobson CM, Smith LJ A 130-residue fragment of the Staphylococcus aureus fibronectin-binding protein has...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR struc
Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Related Articles Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Biopolymers. 1990 Dec;29(14):1807-22 Authors: Kominos D, Bassolino DA, Levy RM, Pardi A The side-chain conformations have been analyzed in the antimicrobial peptide, Neutrophil Peptide-5 (NP-5), whose structure was independently generated from nmr-derived distance constraints using a distance geometry algorithm. The side-chain and peptide...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:23 AM.


Map