BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-12-2013, 11:02 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.

Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.

Related Articles Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.

Protein Sci. 2013 Sep 10;

Authors: Liao SY, Fritzsching KJ, Hong M

Abstract
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane (TM) helix and an adjacent amphipathic helix (AH), the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using 2D magic-angle-spinning (MAS) solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and found them to depend on the membrane composition. In 2D (13) C DARR correlation spectra, DMPC-bound M2FL exhibits several peaks at ?-sheet chemical shifts, which result from water-exposed extra-membrane residues. In contrast, M2FL bound to cholesterol-containing membranes gives predominantly ?-helical chemical shifts. 2D J-INADEQUATE spectra and variable-temperature (13) C spectra indicate that DMPC-bound M2FL is highly dynamic while the cholesterol-containing membranes significantly immobilize the protein at physiological temperature. Chemical-shift prediction for various secondary-structure models suggests that the ?-strand is located at the N-terminus of the DMPC-bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain-truncated M2(21-97), which no longer exhibits ?-sheet chemical shifts in the DMPC-bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol-rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the ?-strand location suggests that chemical-shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.


PMID: 24023039 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR Abstract The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane (TM) helix and an adjacent amphipathic helix (AH), the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using 2D magic-angle-spinning (MAS) solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and...
nmrlearner Journal club 0 09-10-2013 08:44 PM
[NMR paper] Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy.
Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy. Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy. Sci Rep. 2013 Aug 29;3:2538 Authors: Yamamoto K, Dürr UH, Xu J, Im SC, Waskell L, Ramamoorthy A Abstract Microsomal monoxygenase enzymes of the cytochrome-P450 family are found in all biological kingdoms, and play a central role in the breakdown of metabolic as well as...
nmrlearner Journal club 0 08-30-2013 04:35 PM
[NMR paper] Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.
Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p. Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p. Biomol NMR Assign. 2013 Aug 14; Authors: Schütz AK, Habenstein B, Luckgei N, Bousset L, Sourigues Y, Nielsen AB, Melki R, Böckmann A, Meier BH Abstract Sup35p is a yeast prion and is responsible for the trait in Saccharomyces cerevisiae. With 685 amino acids, full-length soluble and fibrillar Sup35p are challenging targets for structural biology as they cannot be investigated...
nmrlearner Journal club 0 08-15-2013 07:45 PM
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR Jonathan K. Williams, Daniel Tietze, Jun Wang, Yibing Wu, William F. DeGrado and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4041412/aop/images/medium/ja-2013-041412_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja4041412 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/SJt4vbTURaE
nmrlearner Journal club 0 06-22-2013 01:40 AM
[NMR paper] Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR.
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. Related Articles Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. J Am Chem Soc. 2013 Jun 11; Authors: Williams JK, Tietze D, Wang J, Wu Y, Degrado WF, Hong M Abstract The M2 protein of influenza A viruses forms a tetrameric proton channel that is targeted by the amantadine class of antiviral drugs. A S31N mutation in...
nmrlearner Journal club 0 06-14-2013 07:31 PM
[NMR paper] Protein oligomers studied by solid-state NMR: the case of full-length nucleoid associated protein H-NS.
Protein oligomers studied by solid-state NMR: the case of full-length nucleoid associated protein H-NS. Related Articles Protein oligomers studied by solid-state NMR: the case of full-length nucleoid associated protein H-NS. FEBS J. 2013 Apr 20; Authors: Renault M, García J, Cordeiro TN, Baldus M, Pons M Abstract Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes...
nmrlearner Journal club 0 04-23-2013 08:37 PM
[NMR paper] Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR.
Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR. J Biomol NMR. 2013 Jan 18; Authors: Ghosh U, Xie L, Weliky DP Abstract...
nmrlearner Journal club 0 02-03-2013 10:19 AM
[NMR paper] Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)
Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR. Related Articles Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR. Biophys J. 2000 Aug;79(2):767-75 Authors: Song Z, Kovacs FA, Wang J, Denny JK, Shekar SC, Quine JR, Cross TA The M2 protein from the influenza A virus forms a proton channel in the virion that is essential for infection. This tetrameric protein...
nmrlearner Journal club 0 11-19-2010 08:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:54 AM.


Map