BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformation and orientation of the retinyl chromophore in rhodopsin: a critical eval

Conformation and orientation of the retinyl chromophore in rhodopsin: a critical evaluation of recent NMR data on the basis of theoretical calculations results in a minimum energy structure consistent with all experimental data.

Related Articles Conformation and orientation of the retinyl chromophore in rhodopsin: a critical evaluation of recent NMR data on the basis of theoretical calculations results in a minimum energy structure consistent with all experimental data.

Biochemistry. 2001 Apr 10;40(14):4201-4

Authors: Singh D, Hudson BS, Middleton C, Birge RR

In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results.

PMID: 11284674 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity.
Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9215-8 Authors: Matsuki Y, Eddy MT, Griffin RG, Herzfeld J
nmrlearner Journal club 0 03-09-2011 02:20 PM
[NMR paper] Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytoch
Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Related Articles Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Biochemistry. 2005 Jun 14;44(23):8244-50 Authors: Strauss HM, Hughes J, Schmieder P Precise structural information regarding the chromophore binding pocket is essential for an understanding of photochromicity and photoconversion in phytochrome photoreceptors. To this end, we are studying the 59 kDa N-terminal module of the cyanobacterial...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-ci
Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. Related Articles Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett. 1998 Jan 30;422(2):201-4 Authors: Gröbner G, Choi G, Burnett IJ, Glaubitz C, Verdegem PJ, Lugtenburg J, Watts A Rhodopsin is the retinal photoreceptor responsible for visual signal transduction. To determine the orientation and...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] A 1H NMR comparative study of the structure of the critical packing interfaces betwee
A 1H NMR comparative study of the structure of the critical packing interfaces between helix and non-helical region in various ligation states of sperm whale myoglobin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A 1H NMR comparative study of the structure of the critical packing interfaces between helix and non-helical region in various ligation states of sperm whale myoglobin. Biochim Biophys Acta. 1997 Nov 14;1343(1):59-66 Authors: Yamamoto Y NMR signals arising...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotei
Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR. FEBS Lett. 1995 Mar 27;362(1):34-8 Authors: Weesie RJ, Askin D, Jansen FJ, de...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhod
NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Related Articles NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Biochemistry. 1995 Jan 31;34(4):1425-32 Authors: Han M, Smith SO Rhodopsin is the photoreceptor in vertebrate rod cells responsible for vision at low light intensities. The photoreactive chromophore in rhodopsin is 11-cis-retinal bound to the protein via a protonated Schiff base with Glu113 as the counterion. We have used the observed 13C NMR...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Conformation of MeAla6-cyclosporin A by NMR. Relationship of sidechain orientation of
Conformation of MeAla6-cyclosporin A by NMR. Relationship of sidechain orientation of the MeBmt-1, MeLeu-9, and MeLeu-10 residues to immunosuppressive activity. Related Articles Conformation of MeAla6-cyclosporin A by NMR. Relationship of sidechain orientation of the MeBmt-1, MeLeu-9, and MeLeu-10 residues to immunosuppressive activity. Int J Pept Protein Res. 1991 May;37(5):351-63 Authors: Gooley PR, Durette PL, Boger J, Armitage IM MeAla6-cyclosporin A (MeAla6-CsA) is a unique CsA analog that shows weak immunosuppressive activity and yet...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:06 PM.


Map