[NMR paper] Confinement and stabilization of Fyn SH3 folding interme-diate mimetics within the cavity of the chaperonin GroEL demonstrated by relaxation-based NMR.
Confinement and stabilization of Fyn SH3 folding interme-diate mimetics within the cavity of the chaperonin GroEL demonstrated by relaxation-based NMR.
Related ArticlesConfinement and stabilization of Fyn SH3 folding interme-diate mimetics within the cavity of the chaperonin GroEL demonstrated by relaxation-based NMR.
Abstract
The interaction of two folding intermediate mimetics of the model protein substrate Fyn SH3 with the chaperonin GroEL, a supramolecular foldase/unfoldase machine, has been investigated by 15N relaxation-based NMR spectroscopy (lifetime line broadening, dark state exchange saturation transfer and relaxation dispersion). The two mimetics comprise C-terminal truncations of wild type and triple mutant (A39V/N53P/V55L) Fyn SH3 in which the C-terminal strand of the SH3 domain is unfolded, while preserving the remaining domain structure. Quantitative analysis of the data reveals that a mobile state of the SH3 domain confined and tethered within the cavity of GroEL, possibly through interactions with the disordered, methionine-rich C-terminal tail(s), can be detected, and that the native state of the folding intermediate mimetics is stabilized by both confinement within and binding to apo GroEL. These data provide a basis for understanding the passive activity of GroEL as a foldase/unfoldase: the unfolded state, in the absence of hydrophobic GroEL-binding consensus sequences, is destabilized within the cavity due to its larger radius of gyration compared to that of the folding intermediate, while the folding intermediate is stabilized relative to the native state owing to exposure of a hydrophobic patch which favors GroEL binding.
PMID: 28156097 [PubMed - as supplied by publisher]
Chaperonin-Based Biolayer Interferometry To Assessthe Kinetic Stability of Metastable, Aggregation-Prone Proteins
Chaperonin-Based Biolayer Interferometry To Assessthe Kinetic Stability of Metastable, Aggregation-Prone Proteins
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00293/20160819/images/medium/bi-2016-00293t_0011.gif
Biochemistry
DOI: 10.1021/acs.biochem.6b00293
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/0ufeLZLV3kA
More...
nmrlearner
Journal club
0
08-19-2016 05:49 PM
[NMR paper] Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR.
Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR.
Related Articles Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR.
Proc Natl Acad Sci U S A. 2015 Jun 29;
Authors: Libich DS, Tugarinov V, Clore GM
Abstract
The prototypical chaperonin GroEL assists protein folding through an ATP-dependent encapsulation mechanism. The details of how GroEL folds proteins remain elusive,...
nmrlearner
Journal club
0
07-01-2015 02:40 PM
[NMR paper] Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Biophys J. 2015 Jan 6;108(1):133-145
Authors: Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FA, Kitahara R
Abstract
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins...
nmrlearner
Journal club
0
01-08-2015 01:29 PM
[NMR paper] Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Proc Natl Acad Sci U S A. 2013 Jun 24;
Authors: Libich DS, Fawzi NL, Ying J, Clore GM
Abstract
nmrlearner
Journal club
0
06-27-2013 02:10 PM
NMR spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
NMR spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
NMR spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
Protein Sci. 2011 Jun 1;
Authors: Koculi E, Horst R, Horwich AL, Wüthrich K
NMR observation of the uniformly (2) H,(15) N-labeled stringent 33 kDa substrate protein rhodanese in a productive complex with the uniformly (14) N-labeled 400 kDa single-ring version of the E. coli chaperonin GroEL, SR1,...
nmrlearner
Journal club
0
06-03-2011 10:20 AM
[NMR paper] Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
Related Articles Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12748-53
Authors: Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K
The reaction cycle and the major structural states of the molecular chaperone GroEL and its cochaperone, GroES, are well characterized. In contrast, very little is known about the nonnative states of the substrate polypeptide acted on by the...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Related Articles Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
J Am Chem Soc. 2005 Aug 24;127(33):11676-83
Authors: Desvaux H, Dubois L, Huber G, Quillin ML, Berthault P, Matthews BW
Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] The use of 19F NMR in the study of protein alkylation by fluorinated reactive interme
The use of 19F NMR in the study of protein alkylation by fluorinated reactive intermediates.
Related Articles The use of 19F NMR in the study of protein alkylation by fluorinated reactive intermediates.
Adv Exp Med Biol. 1991;283:735-8
Authors: Harris JW, Anders MW