Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
J Magn Reson. 2011 Apr;209(2):352-8
Authors: Shrot Y, Frydman L
A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called "ultrafast" methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR's simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains - often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method's performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%.
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling
Abstract The fast Fourier transformation has been the gold standard for transforming data from time to frequency domain in many spectroscopic methods, including NMR. While reliable, it has as a drawback that it requires a grid of uniformly sampled data points. This needs very long measuring times for sampling in multidimensional experiments in all indirect dimensions uniformly and even does not allow reaching optimal evolution times that would...
FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation
FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation
Abstract Non-uniform sampling (NUS) enables recording of multidimensional NMR data at resolutions matching the resolving power of modern instruments without using excessive measuring time. However, in order to obtain satisfying results, efficient reconstruction methods are needed. Here we describe an optimized version of the Forward Maximum entropy (FM) reconstruction method, which can reconstruct up to three indirect dimensions. For complex datasets, such as NOESY spectra,...