BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-28-2016, 11:03 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,715
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS.

Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS.

Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS.

Proc Natl Acad Sci U S A. 2016 Aug 26;

Authors: Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B

Abstract
The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.


PMID: 27566405 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamical and Structural Alterations withing Lipid-Protein Assemblies Control Apoptotic Pore Formation - A Solid State NMR Study
Dynamical and Structural Alterations withing Lipid-Protein Assemblies Control Apoptotic Pore Formation - A Solid State NMR Study Publication date: 16 February 2016 Source:Biophysical Journal, Volume 110, Issue 3, Supplement 1</br> Author(s): Artur P.G. Dingeldein, Martin Lidman, Tobias Sparrman, Gerhard Gröbner</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-17-2016 07:50 PM
[NMR paper] Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data.
Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data. PLoS One. 2015;10(8):e0135455 Authors: Choudhury AR, Sikorska E, van den Boom J, Bayer P, Popenda ?, Szutkowski K, Jurga S, Bonomi M, Sali A, Zhukov I, Passamonti S, Novi? M Abstract We present a 3D model of the four...
nmrlearner Journal club 0 08-22-2015 11:20 AM
[NMR paper] Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR.
Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. J Phys Chem B. 2013 Jun 24; Authors: Campos LA, Sadqi M, Liu J, Wang X, English DS, Munoz V Abstract Theory predicts that folding free energy landscapes are intrinsically malleable, and as such are expected to respond to perturbations in topographically complex...
nmrlearner Journal club 0 06-27-2013 01:52 AM
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly. Sci China Life Sci. 2011 Feb;54(2):101-11 Authors: Feng W, Pan L, Zhang M NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and...
nmrlearner Journal club 0 02-15-2011 07:17 PM
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy Abstract An experiment is presented to determine 3JHNHα coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D 1H, or 2D and 3D 1H-15N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording 1H-13C� correlation...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Measurement of long-range cross-correlation rates using a combination of single- and
Measurement of long-range cross-correlation rates using a combination of single- and multiple-quantum NMR spectroscopy in one experiment. Related Articles Measurement of long-range cross-correlation rates using a combination of single- and multiple-quantum NMR spectroscopy in one experiment. J Am Chem Soc. 2002 Apr 17;124(15):4050-7 Authors: Fruh D, Chiarparin E, Pelupessy P, Bodenhausen G A method is described to determine long-range cross-correlations between the modulations of an anisotropic chemical shift (e.g., of a C' carbonyl carbon in...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR expe
Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977-91 Authors: Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM ...
nmrlearner Journal club 0 08-22-2010 05:08 PM
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane Protein
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/2007/129/i21/abs/ja069028m.html Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored Electron-Carrier Protein, Cytochrome b<sub>5</sub> <aui auinm="Durr, U. H. N."> <aui auinm="Yamamoto, K."> <aui auinm="Im, S.-C."> <aui auinm="Waskell, L."> <aui auinm="Ramamoorthy, A."> <aug><aul></aul></aug></aui></aui></aui></aui></aui> <au>Ulrich H. N. Dürr,</au> <au>Kazutoshi Yamamoto,</au><au>Sang-Choul Im,</au><au>Lucy Waskell,and </au><au>Ayyalusamy Ramamoorthy*</au> *ramamoor@umich.edu <aff></aff> ...
sivanmr Solid-state high-res. NMR 2 05-30-2007 12:54 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:19 AM.


Map