BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


 
 
Thread Tools Search this Thread Rate Thread Display Modes
Prev Previous Post   Next Post Next
  #1  
Unread 03-20-2025, 08:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 24,001
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A complete set of cross-correlated relaxation experiments for determining the protein backbone dihedral angles

A complete set of cross-correlated relaxation experiments for determining the protein backbone dihedral angles

The investigation of structural propensities of proteins is essential for understanding how they function at the molecular level. NMR, offering atomic-scale information, is often the method of choice. One of the available techniques relies on the cross-correlated relaxation (CCR) effect, whose magnitude is related to local spatial conformation. Application of these methods is difficult if the protein under investigation exhibits high mobility, because NMR observables like CCR rates and chemical shifts present themselves as mere averages of an underlying ensemble distribution. Furthermore, relaxation observables are a convolution of structural and dynamical components. Despite these challenges, it is possible to infer the underlying structural ensemble by combining information from several CCR rates with a different geometrical dependence. In this paper, we present a set of eight CCR experiments tailored for proteins of a highly dynamic nature. Analyzed together, they yield a distribution of backbone dihedral angles for each residue of the protein. The experiments were validated on the folded protein ubiquitin using PDB-deposited NMR structures for comparison. Extraordinary peak separation, achieved by evolving four different chemical shifts, allows for the application of this method to intrinsically disordered proteins in future studies.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No
 
Similar Threads
Thread Thread Starter Forum Replies Last Post
TRACT revisited: an algebraic solution for determining overall rotational correlation times from cross-correlated relaxation rates
TRACT revisited: an algebraic solution for determining overall rotational correlation times from cross-correlated relaxation rates Abstract Accurate rotational correlation times ( \({\tau }_{\text{c}}\) ) are critical for quantitative analysis of fast timescale NMR dynamics. As molecular weights increase, the classic derivation of \({\tau }_{c}\) using transverse and longitudinal relaxation rates...
nmrlearner Journal club 0 09-04-2021 10:34 AM
Cross-correlated relaxation rates between protein backbone Hā??X dipolar interactions
Cross-correlated relaxation rates between protein backbone Hā??X dipolar interactions Abstract The relaxation interference between dipoleā??dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive HNā??N and...
nmrlearner Journal club 0 03-13-2017 02:54 AM
[NMR images] Table 1. Definition of dihedral angles, the expected dihedral angle ...
http://biology.kenyon.edu/HHMI/NMR_Presentation/NMR-120303_files/image006.gif biology.kenyon.edu 18/06/2013 7:23:35 AM GMT Table 1. Definition of dihedral angles, the expected dihedral angle ... More...
nmrlearner NMR pictures 0 06-18-2013 07:21 AM
[NMR paper] Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins.
Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins. Related Articles Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins. Chemphyschem. 2001 Sep 17;2(8-9):539-43 Authors: Deschamps M, Bodenhausen G Abstract Cross correlations between the fluctuations of dipolar (13) C(?) -(1) H(?) interactions yield information about the relative orientation of successive (13) C(?) -(1) H(?) bond vectors...
nmrlearner Journal club 0 05-22-2013 04:43 PM
[NMR paper] Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Angew Chem Int Ed Engl. 2013 Mar 20; Authors: Stanek J, Saxena S, Geist L, Konrat R, Ko?mi?ski W Abstract Ab ultra-high-resolution NMR experiment for the measurement of intraresidue (1) H(i)-(15) N(i)-(13) C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone...
nmrlearner Journal club 0 03-23-2013 06:36 PM
[NMR paper] Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles.
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles. Related Articles Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 Authors: Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Abstract While the quality of the current CHARMM22/CMAP additive force field for...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation Abstract The measurements of cross-correlated relaxation rates between HNā??N and CĪ²ā??CĪ³ intraresidual and sequential dipolar interactions is demonstrated in ASN, ASP and aromatic residues. The experiment can be used for deuterated samples and no additional knowledge such as Karplus parametrizations is required for the analysis. The data constitutes a new type of information since no other method relates the CĪ²ā??CĪ³ bond to HNā??N. Using this method the dominant populations of rotamer...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Automated NMR determination of protein backbone dihedral angles from cross-correlated
Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. Related Articles Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. J Biomol NMR. 2002 Apr;22(4):349-63 Authors: Kloiber K, Schüler W, Konrat R The simultaneous interpretation of a suite of dipole-dipole and dipole-CSA cross-correlation rates involving the backbone nuclei 13Calpha, 1Halpha, 13CO, 15N and 1HN can be used to resolve the ambiguities associated with each individual...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:43 PM.


Map