BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-10-2017, 01:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution*Measurements in Drug Products.

Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution*Measurements in Drug Products.

Related Articles Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution*Measurements in Drug Products.

AAPS J. 2017 Aug 08;:

Authors: Patil SM, Keire DA, Chen K

Abstract
Particle size distribution, a measurable physicochemical quantity, is a critical quality attribute of drug products that needs to be controlled in drug manufacturing. The non-invasive methods of dynamic light scattering (DLS) and Diffusion Ordered SpectroscopY (DOSY) NMR can be used to measure diffusion coefficient and derive the corresponding hydrodynamic radius. However, little is known about their use and sensitivity as analytical tools for particle size measurement of formulated protein therapeutics. Here, DLS and DOSY-NMR methods are shown to be orthogonal and yield identical diffusion coefficient results for a homogenous monomeric protein standard, ribonuclease A. However, different diffusion coefficients were observed for five insulin drug products measured using the two methods. DOSY-NMR yielded an averaged diffusion coefficient among fast exchanging insulin oligomers, ranging between dimer and hexamer*in size. By contrast, DLS showed several distinct species, including dimer, hexamer, dodecamer and other aggregates. The heterogeneity or polydisperse nature of insulin oligomers in formulation caused DOSY-NMR and DLS results to differ from each other. DLS measurements provided more quality attributes and higher sensitivity to larger aggregates than DOSY-NMR. Nevertheless, each method was sensitive to a different range of particle sizes and complemented each other. The application of both methods increases the assurance of complex drug quality in this similarity comparison.


PMID: 28791599 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment.
Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment. Related Articles Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment. Phys Rev Lett. 2017 Mar 03;118(9):097801 Authors: Palit S, He L, Hamilton WA, Yethiraj A, Yethiraj A Abstract The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as...
nmrlearner Journal club 0 03-19-2017 10:38 PM
[NMR paper] Investigating the Dynamic Aspects of Drug-Protein Recognition through a Combination of MD and NMR Analyses: Implications for the Development of Protein-Protein Interaction Inhibitors.
Investigating the Dynamic Aspects of Drug-Protein Recognition through a Combination of MD and NMR Analyses: Implications for the Development of Protein-Protein Interaction Inhibitors. Investigating the Dynamic Aspects of Drug-Protein Recognition through a Combination of MD and NMR Analyses: Implications for the Development of Protein-Protein Interaction Inhibitors. PLoS One. 2014;9(5):e97153 Authors: Meli M, Pagano K, Ragona L, Colombo G Abstract In this paper, we investigate the dynamic aspects of the molecular recognition...
nmrlearner Journal club 0 05-29-2014 09:35 PM
[NMR paper] Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses.
Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. Eur Biophys J. 2014 May 14; Authors: Yao S, Weber DK, Separovic F, Keizer DW Abstract Molecular translational self-diffusion, a measure of diffusive...
nmrlearner Journal club 0 05-16-2014 08:06 PM
PFG-NMR self-diffusion in casein dispersions: Effects of probe size and protein aggregate size
PFG-NMR self-diffusion in casein dispersions: Effects of probe size and protein aggregate size June 2013 Publication year: 2013 Source:Food Hydrocolloids, Volume 31, Issue 2</br> </br> The self-diffusion coefficients of different molecular weight PEGs (Polyethylene glycol) and casein particles were measured, using a pulsed-gradient nuclear magnetic resonance technique (PFG-NMR), in native phosphocaseinate (NPC) and sodium caseinate (SC) dispersions where caseins are not structured into micelles. The dependence of the PEG self-diffusion coefficient on the PEG size, casein...
nmrlearner Journal club 0 02-03-2013 10:05 AM
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy. Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy. J Biomol NMR. 2011 Mar 18; Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner Journal club 0 03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...
nmrlearner Journal club 0 03-22-2011 07:32 PM
[NMR tweet] www.sciencia.org Pore Size Distribution Analysis of Mesoporous TiO2 Spheres by 1H Nuc
www.sciencia.org Pore Size Distribution Analysis of Mesoporous TiO2 Spheres by 1H Nuclear Magnetic Resonance (NMR)... http://dlvr.it/5hj3z Published by PhysicsSci (Sciencia Physics) on 2010-09-22T04:33:02Z Source: Twitter
nmrlearner Twitter NMR 0 09-22-2010 04:40 AM
[NMR paper] The hydration of proteins in solutions by self-diffusion coefficients. NMR study.
The hydration of proteins in solutions by self-diffusion coefficients. NMR study. Related Articles The hydration of proteins in solutions by self-diffusion coefficients. NMR study. Biochim Biophys Acta. 1996 Apr 17;1289(3):312-4 Authors: Baranowska HM, Olszewski KJ The hydration of the globular (lysozyme, albumin) and fibrillar (fibrinogen) proteins in solution has been determined from the measurements of the self-diffusion coefficient by NMR pulsed gradient method. It has been concluded that the concentration dependencies of the...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:14 AM.


Map