A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in (19)F NMR studies of proteins.
J Biomol NMR. 2015 Mar 27;
Authors: Ye L, Larda ST, Frank Li YF, Manglik A, Prosser RS
Abstract
The elucidation of distinct protein conformers or states by fluorine ((19)F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the (19)F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H2O*=*4) to polar (MeOH:H2O*=*0.25). (19)F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.
PMID: 25813845 [PubMed - as supplied by publisher]
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in 19 F NMR studies of proteins
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in 19 F NMR studies of proteins
Abstract
The elucidation of distinct protein conformers or states by fluorine (19F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA),...
nmrlearner
Journal club
0
03-27-2015 07:43 AM
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity
Abstract
Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here....
nmrlearner
Journal club
0
03-04-2015 08:56 AM
Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins
Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins
Abstract
Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore,...
nmrlearner
Journal club
0
02-10-2015 10:56 AM
[NMR paper] Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins
Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins
Publication date: Available online 22 November 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Jinfa Ying , Julien Roche , Ad Bax</br>
Application of band-selective homonuclear (BASH) 1H decoupling pulses during acquisition of the 1H free induction decay is shown to be an efficient procedure for removal of scalar and residual dipolar couplings between amide and aliphatic protons. BASH decoupling can be applied in both dimensions of a...
nmrlearner
Journal club
0
11-23-2013 04:05 AM
[NMR paper] Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Related Articles Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:50-68
Authors: Gopinath T, Mote KR, Veglia G
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS)...
nmrlearner
Journal club
0
10-29-2013 08:21 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Publication date: Available online 12 August 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br>
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
nmrlearner
Journal club
0
08-13-2013 04:09 AM
Ultrahigh resolution protein structures using NMR chemical shift tensors [Biophysics and Computational Biology]
Ultrahigh resolution protein structures using NMR chemical shift tensors
Wylie, B. J., Sperling, L. J., Nieuwkoop, A. J., Franks, W. T., Oldfield, E., Rienstra, C. M....
Date: 2011-10-11
NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13C? and 15N (peptide backbone) groups in a protein, the ?1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13C? and...
nmrlearner
Journal club
0
10-12-2011 06:37 AM
[NMR paper] Optimizing resolution in multidimensional NMR by three-way decomposition.
Optimizing resolution in multidimensional NMR by three-way decomposition.
Related Articles Optimizing resolution in multidimensional NMR by three-way decomposition.
J Biomol NMR. 2003 Oct;27(2):165-73
Authors: Orekhov VY, Ibraghimov I, Billeter M
Resolution depends on the number of points sampled in a FID; in indirectly detected dimensions it is an important determinant of the total experiment time. Based on the high redundancy present in NMR data, we propose the following timesaving scheme for three-dimensional spectra. An extensive grid of...