BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Comparison between the phi distribution of the amino acids in the protein database an

Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.

Related Articles Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.

J Mol Biol. 1995 Nov 24;254(2):322-33

Authors: Serrano L

It has been indicated that amino acids have various intrinsic phi and psi propensities, as demonstrated from the comparison between experimental secondary structure propensities and their relative statistical distribution in the protein database for the appropriate region of the Ramachandran plot. However, this does not eliminate the possibility that these experimental propensities are the result of context effects due to the secondary structure environment of the mutated position. To demonstrate that there are at least real intrinsic phi propensities, independent of context effects, we have used two different nuclear magnetic resonance parameters related to the phi dihedral angle (J3 alpha HN coupling constants and the chemical shift of the C alpha H proton), determined in random-coil tetra- and pentapeptides, and/or in proteins. Comparison of the experimentally determined values for these parameters with the theoretical ones determined from the analysis by different empirical and theoretical equations of the phi dihedral angle statistical distribution of the amino acids in the protein database, supports the idea that each amino acid has, at least, different phi intrinsic propensities. Consideration of all conformations, or only coil conformations, in the protein database produces similar results. The reasonable correlation between these experimental and theoretical data and the hydrogen-exchange data in random-coil peptides suggests that maximisation of hydrophobic surface-buried and hydrogen-bond formation with the solvent could be responsible for these different random-coil conformational preferences. Analysis of the intrinsic propensities for beta-strand, alpha-helix and polyproline II dihedral angles of the 20 amino acids in coil conformations, indicates that the side-chain of the amino acids is mainly determining the relative preferences for the phi angle.

PMID: 7490751 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] 13C quaternary centers in amino acids
13C quaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxylic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heard the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-01-2011 07:20 AM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 01-28-2011 04:52 AM
[NMR paper] Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic stu
Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic studies of proteins. Related Articles Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic studies of proteins. Magn Reson Chem. 2004 Apr;42(4):369-72 Authors: Iuga A, Brunner E Solid-state 31P NMR spectroscopy was applied to measure the isotropic chemical shifts, chemical shift anisotropies and asymmetry parameters of three phosphorylated amino acids, O-phospho-L-serine, O-phospho-L-threonine and O-phospho-L-tyrosine. The...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] 14N NMR relaxation times of several protein amino acids in aqueous solution--comparis
14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. Related Articles 14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. J Magn Reson. 2003 Oct;164(2):294-303 Authors: Troganis AN, Tsanaktsidis C, Gerothanassis IP The 14N nuclear magnetic resonance (NMR)...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues
Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. Related Articles Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. J Mol Biol. 1998 Dec 18;284(5):1597-609 Authors: Griffiths-Jones SR, Sharman GJ, Maynard AJ, Searle MS Analysis of residues in coil regions of protein structures...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Biochem Cell Biol. 1998;76(2-3):379-90 Authors: Slupsky CM, Gentile LN, McIntosh LP The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] The solution conformations of amino acids from molecular dynamics simulations of Gly-
The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters. Related Articles The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters. Biochem Cell Biol. 1998;76(2-3):164-70 Authors: van der Spoel D The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein-peptide interactions. To date, no...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:27 AM.


Map