BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-13-2017, 06:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles.

Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles.

Related Articles Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles.

Am J Physiol Regul Integr Comp Physiol. 2017 Dec 01;313(6):R740-R753

Authors: Bendahan D, Chatel B, Jue T

Abstract
Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1H NMR, 31P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O2, the analysis shows that at the onset of muscle contraction, O2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition.


PMID: 28877871 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Highlights
nmrlearner Journal club 0 12-15-2012 09:51 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Highlights
nmrlearner Journal club 0 12-01-2012 06:10 PM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> Xiao-Hong Zhu, Wei Chen</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 23 April 2011</br> Xiao-Hong, Zhu , Wei, Chen</br> *Highlights:*? This article reviews the developments of in vivo 17O NMR imaging in brain research. ? In vivo 17O NMR imaging has improved significantly at high/ultrahigh field. ? In vivo 17O NMR can noninvasively image brain oxygen metabolism and perfusion. ? In vivo 17O NMR is useful for mapping the functional change in oxygen...
nmrlearner Journal club 0 04-24-2011 03:42 PM
[NMR paper] 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindi
1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta. Protein Sci. 1996 Nov;5(11):2162-74 Authors: Potts BC, Carlström G,...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger o
Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR structure of the complex with the Psi-site analog, dACGCC. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies
Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8455-9 Authors: Kochoyan M, Keutmann HT, Weiss MA The...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies
Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8455-9 Authors: Kochoyan M, Keutmann HT, Weiss MA The...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:04 AM.


Map