Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments.
Biochim Biophys Acta. 2011 Jul 23;
Authors: Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F
Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a portion of the N-terminal domain, transmembrane domain 1 (TM1), intracellular loop 1, TM2 and part of extracellular loop 2 of the ?-factor receptor (Ste2p) from Saccharomyces cerevisiae. The structure of this peptide was previously determined to form a helical hairpin in lyso-palmitoylphosphatidyl-glycerol micelles (LPPG) (Neumoin et al., 2009) [1]. Herein, we perform a systematic comparison of the structure of this protein fragment in micelles and trifluoroethanol (TFE):water in order to understand whether spectra recorded in organic:aqueous medium can facilitate the structure determination in a micellar environment. Using uniformly labeled peptide and peptide selectively protonated on Ile, Val and Leu methyl groups in a perdeuterated background and a broad set of 3D NMR experiments we assigned 89% of the observable atoms. NOEs and chemical shift analysis were used to define the helical regions of the fragment. Together with constraints from paramagnetic spin labeling, NOEs were used to calculate a transiently folded helical hairpin structure for this peptide in TFE:water. Correlation of chemical shifts was insufficient to transfer assignments from TFE:water to LPPG spectra in the absence of further information.
PMID: 21791199 [PubMed - as supplied by publisher]
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biochemistry. 2005 Sep 6;44(35):11795-810
Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F
The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled r
Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor.
Related Articles Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor.
J Am Chem Soc. 2005 Jun 8;127(22):8010-1
Authors: Tian C, Breyer RM, Kim HJ, Karra MD, Friedman DB, Karpay A, Sanders CR
The seven-transmembrane-spanning G protein-coupled receptor (GPCR) superfamily plays many important roles in basic biology, human health, and human disease. Here, well-resolved solution NMR spectra are presented for a human...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solutio
Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.
Related Articles Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3409-13
Authors: Klein-Seetharaman J, Yanamala NV, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG
G protein-coupled receptors are cell-surface seven-helical membrane proteins that undergo conformational changes on activation. The mammalian photoreceptor, rhodopsin, is the...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonis
The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep.
Related Articles The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep.
J Biomol Struct Dyn. 2003 Oct;21(2):201-10
Authors: Miskolzie M, Kotovych G
The conformation of orexin-A, an orphan G-protein coupled receptor agonist has been determined when bound to sodium dodecylsulphate-d(25) (SDS) micelles by (1)H and (13)C NMR and molecular...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor
The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide.
Related Articles The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide.
Biopolymers. 2003 Jun;69(2):201-15
Authors: Miskolzie M, Kotovych G
The tertiary structure of the pain modulating and anti-opiate neuropeptide, human neuropeptide AF (NPAF) (the sequence is AGEGLNSQFWSLAAPQRF-NH(2)), was determined by (1)H-NMR. The structure of NPAF was determined in two solvent systems, namely 50%/50%...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Measurement of conformational constraints in an elastin-mimetic protein by residue-pa
Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR.
Related Articles Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR.
J Biomol NMR. 2002 Feb;22(2):175-9
Authors: Hong M, McMillan RA, Conticello VP
We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Sac
Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor.
Related Articles Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor.
Biopolymers. 1998 Nov;46(6):343-57
Authors: Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F
Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by...