BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-13-2015, 11:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.

Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.

Related Articles Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.

Methods Enzymol. 2015;558:279-331

Authors: Duss O, Yulikov M, Allain FH, Jeschke G

Abstract
Although functional significance of large noncoding RNAs and their complexes with proteins is well recognized, structural information for this class of systems is very scarce. Their inherent flexibility causes problems in crystallographic approaches, while their typical size is beyond the limits of state-of-the-art purely NMR-based approaches. Here, we review an approach that combines high-resolution NMR restraints with lower resolution long-range constraints based on site-directed spin labeling and measurements of distance distribution restraints in the range between 15 and 80Å by the four-pulse double electron-electron resonance (DEER) EPR technique. We discuss sample preparation, the basic assumptions behind data analysis in the EPR-based distance measurements, treatment of the label-based constraints in generation of the structure, and the back-calculation of distance distributions for structure validation. Step-by-step protocols are provided for DEER distance distribution measurements including data analysis and for CYANA based structure calculation using combined NMR and EPR data.


PMID: 26068745 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR structures provide first structural coverage of the large protein domain family PF08369 and complementary structural coverage of dark operative protochlorophyllide oxidoreductase complexes.
Solution NMR structures provide first structural coverage of the large protein domain family PF08369 and complementary structural coverage of dark operative protochlorophyllide oxidoreductase complexes. Solution NMR structures provide first structural coverage of the large protein domain family PF08369 and complementary structural coverage of dark operative protochlorophyllide oxidoreductase complexes. J Struct Funct Genomics. 2013 Aug 21; Authors: Pulavarti SV, He Y, Feldmann EA, Eletsky A, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA, Szyperski...
nmrlearner Journal club 0 08-23-2013 01:07 AM
Scientists Determine 1000 Protein Structures Of Deadly Diseases - Medical News Today
<img alt="" height="1" width="1" /> Scientists Determine 1000 Protein Structures Of Deadly Diseases Medical News Today Working together, two scientific organizations have achieved a key milestone earlier than planned: using X-ray crystallography and nuclear magnetic resonance to probe at the atomic level, they have determined the structure of 1000 proteins from more ... Scientists Determine 1000 Protein Structures Of Deadly Diseases - Medical News Today More...
nmrlearner Online News 0 06-12-2012 10:36 AM
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner Journal club 0 02-11-2012 10:31 AM
[NMR paper] Rapid analysis of large protein-protein complexes using NMR-derived orientational con
Rapid analysis of large protein-protein complexes using NMR-derived orientational constraints: the 95 kDa complex of LpxA with acyl carrier protein. Related Articles Rapid analysis of large protein-protein complexes using NMR-derived orientational constraints: the 95 kDa complex of LpxA with acyl carrier protein. J Mol Biol. 2004 Nov 5;343(5):1379-89 Authors: Jain NU, Wyckoff TJ, Raetz CR, Prestegard JH Characterization of protein-protein interactions that are critical to the specific function of many biological systems has become a primary...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution
TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Related Articles TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci. 2000 Oct;25(10):462-8 Authors: Riek R, Pervushin K, Wüthrich K TROSY and CRINEPT are new techniques for solution NMR studies of molecular and supramolecular structures. They allow the collection of high-resolution spectra of structures with molecular weights >100 kDa, significantly extending the range of macromolecular systems that can...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Determining the structures of large proteins and protein complexes by NMR.
Determining the structures of large proteins and protein complexes by NMR. Related Articles Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 1998 Jan;16(1):22-34 Authors: Clore GM, Gronenborn AM Recent advances in multidimensional NMR methodology to obtain 1H, 15N and 13C resonance assignments, interproton-distance and torsion-angle restraints, and restraints that characterize long-range order have, coupled with new methods of structure refinement, permitted solution structure of proteins in excess...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. Angew Chem Int Ed Engl. 2010 Jul 28; Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner Journal club 0 08-17-2010 03:36 AM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120 Abstract: Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...
daniel Journal club 0 08-03-2008 03:16 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:58 PM.


Map