BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-30-2014, 05:38 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

Related Articles Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

J Magn Reson. 2013 Dec 16;

Authors: Irvine AG, Slynko V, Nikolaev Y, Senthamarai RR, Pervushin K

Abstract
Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community.


PMID: 24472492 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Collaborative development for setup, execution, sharing and analytics of complex NMR experiments
Collaborative development for setup, execution, sharing and analytics of complex NMR experiments Publication date: Available online 16 December 2013 Source:Journal of Magnetic Resonance</br> Author(s): Alistair G. Irvine , Vadim Slynko , Yaroslav Nikolaev , Russell R.P. Senthamarai , Konstantin Pervushin</br> Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimization of NMR experiments has for many years been performed locally, with implementations often specifi c to an individual spectrometer....
nmrlearner Journal club 0 12-16-2013 10:09 AM
[NMR images] Nuclear Magnetic Resonance Lab | Flickr - Photo Sharing!
http://farm5.staticflickr.com/4139/4878267363_cbfe9a7108_z.jpg www.flickr.com 16/10/2013 11:23:50 AM GMT Nuclear Magnetic Resonance Lab | Flickr - Photo Sharing! More...
nmrlearner NMR pictures 0 10-27-2013 02:39 PM
[NMR paper] A Suite of Solid-State NMR Experiments for RNA Intranucleotide Resonance Assignment in a 21 kDa Protein-RNA Complex.
A Suite of Solid-State NMR Experiments for RNA Intranucleotide Resonance Assignment in a 21 kDa Protein-RNA Complex. Related Articles A Suite of Solid-State NMR Experiments for RNA Intranucleotide Resonance Assignment in a 21 kDa Protein-RNA Complex. Angew Chem Int Ed Engl. 2013 Jul 26; Authors: Marchanka A, Simon B, Carlomagno T Abstract Intranucleotide resonance of the 26mer box C/D RNA in complex with the L7Ae protein were assigned by solid-state NMR (ssNMR; see picture) spectroscopy. This investigation opens the way for studying RNA in...
nmrlearner Journal club 0 07-31-2013 12:00 PM
[Question from NMRWiki Q&A forum] 1,n-ADEQUATE setup
1,n-ADEQUATE setup I need to measure the 4-bond coupling into a group of unassigned quaternary carbons.I would like to use the 1,n-ADEQUATE but it is commonly displayed as a DQ format which is not comparable to the standard 2D axis. I read about a refocused version of the 1,1-ADEQUATE. This refocusing makes it possible to directly compare the spectra of traditional non-DQ formats so I was wondering if the same refocusing period could be used in the 1,n experiment? If not, how do you optimize the indirect DQ formated axis (in Bruker SW and O2P) of the 1,n-ADEQUATE experiment if you...
nmrlearner News from other NMR forums 0 07-29-2011 11:48 PM
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. J Struct Biol. 2011 Apr 9; Authors: Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki EI, Shimada I, Takahashi H Protein-protein interactions are necessary for various cellular...
nmrlearner Journal club 0 04-20-2011 07:15 PM
Spatially encoded strategies in the execution of biomolecular-oriented 3D NMR experiments
Spatially encoded strategies in the execution of biomolecular-oriented 3D NMR experiments Mor Mishkovsky, Maayan Gal and Lucio Frydman Journal of Biomolecular NMR; 2007; 39(4); pp 291-301 Abstract: Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-domain signals S(t 3), as a function of two time variables (t 1, t 2) which need to undergo parametric incrementations throughout...
Deano Journal club 0 08-14-2008 09:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:47 AM.


Map