BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 5.00 average. Display Modes
  #1  
Old 02-25-2017, 06:21 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Cobalt-based paramagnetic probe to study RNA-protein interactions by NMR

Cobalt-based paramagnetic probe to study RNA-protein interactions by NMR

Publication date: Available online 24 February 2017
Source:Journal of Inorganic Biochemistry

Author(s): Leah M. Seebald, Christopher M. DeMott, Srivathsan Ranganathan, Papa Nii Asare Okai, Anastasia Glazunova, Alan Chen, Alexander Shekhtman, Maksim Royzen

Paramagnetic resonance enhancement (PRE) is an NMR technique that allows studying three-dimensional structures of RNA-protein complexes in solution. RNA strands are typically spin labeled using nitroxide reagents, which provide minimal perturbation to the native structure. The current work describes an alternative approach, which is based on a Co2+-based probe that can be covalently attached to RNA in the vicinity of the protein's binding site using ‘click’ chemistry. Similar to nitroxide spin labels, the transition metal based probe is capable of attenuating NMR signal intensities from protein residues localized <40Ĺ away. The extent of attenuation is related to the probe's distance, thus allowing constructing the protein's contact surface map. This new paradigm has been applied to study binding of HIV-1 nucleocapsid protein, NCp7, to a model RNA pentanucleotide.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe.
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. J Biomol NMR. 2011 Sep 17; Authors: Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR, Inagaki F Abstract A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation...
nmrlearner Journal club 0 09-20-2011 03:10 PM
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe Abstract A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligandâ??protein complex is determined. PRE is an...
nmrlearner Journal club 0 09-20-2011 05:02 AM
[NMR paper] Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis
Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. Related Articles Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. J Am Chem Soc. 2002 Feb 27;124(8):1778-81 Authors: Luchette PA, Prosser RS, Sanders CR Oxygen solubility increases toward the hydrophobic interior of membranes. Using NMR, this O(2) solubility gradient gives rise to an exquisite range of position-dependent paramagnetic effects at partial pressures of 100...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe.
Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe. Related Articles Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe. Protein Sci. 2001 Aug;10(8):1498-507 Authors: Niccolai N, Spadaccini R, Scarselli M, Bernini A, Crescenzi O, Spiga O, Ciutti A, Di Maro D, Bracci L, Dalvit C, Temussi PA The design of safe sweeteners is very important for people who are affected by diabetes, hyperlipemia, and caries and other diseases that are linked to the consumption of sugars. Sweet...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas
Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin. Inorg Chem. 1997 Sep 24;36(20):4567-4570 Authors: Vila AJ, Ramirez BE, Di Bilio AJ, Mizoguchi TJ, Richards JH, Gray HB NMR spectra of paramagnetic Co(II) and Cu(II) derivatives of Pseudomonas aeruginosa His46Asp...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Paramagnetic cobalt and nickel derivatives of Alcaligenes denitrificans azurin and it
Paramagnetic cobalt and nickel derivatives of Alcaligenes denitrificans azurin and its M121Q mutant. A 1H NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Paramagnetic cobalt and nickel derivatives of Alcaligenes denitrificans azurin and its M121Q mutant. A 1H NMR study. Biochemistry. 1996 Feb 13;35(6):1810-9 Authors: Salgado J, Jiménez HR, Moratal JM, Kroes S, Warmerdam GC, Canters GW Using cobalt or nickel to replace copper in native azurin allows one to fingerprint the...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] 1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(I
1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(II)-azurin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(II)-azurin. Eur J Biochem. 1995 Jul 15;231(2):358-69 Authors: Salgado J, Jiménez HR, Donaire A, Moratal JM Substitution of copper by cobalt in blue copper proteins gives a paramagnetic metalloderivative...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] The interaction of acetate and formate with cobalt carbonic anhydrase. An NMR study.
The interaction of acetate and formate with cobalt carbonic anhydrase. An NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The interaction of acetate and formate with cobalt carbonic anhydrase. An NMR study. Eur J Biochem. 1992 Sep 15;208(3):607-15 Authors: Bertini I, Luchinat C, Pierattelli R, Vila AJ The interaction of formate and acetate ions with cobalt-substituted carbonic anhydrase (CA) has been investigated...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:23 PM.


Map