BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells.

Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells.

Related Articles Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells.

Biochemistry. 1992 Jul 14;31(27):6272-8

Authors: Shachar-Hill Y, Shulman RG

Applications of high-resolution 35Cl NMR to the study of chloride in vivo and in vesicles have hitherto been limited by problems of NMR detectability and of resolving internal from external signals. We have characterized the effects of Co2+ on the 35Cl resonance of Cl- in solution and have shown that when added to suspensions of lipid vesicles, Co2+ shifts the 35Cl signal of the extravesicular Cl-, allowing clear resolution and quantitation of two peaks. We have assigned these signals to chloride inside and outside the vesicles. The spectra do not change over a 90-min period, demonstrating the stability of the vesicles in the presence of Co2+. This technique is shown to be applicable to red blood cell ghosts, where intravesicular and extravesicular chloride signals were separated and measured and chloride/sulfate exchange through the band 3 anion transport protein A was followed. In two plant species (an alga and a higher plant), an intracellular Cl- signal can be observed and resolved from the extracellular signal. The intracellular transportable chloride was found to be fully NMR-visible (+/- 5%) in the algal cells. The high steady-state levels of Cl- seen in the alga were consistent with previous work using 36Cl- labeling on a related species [Doblinger, R., & Tromballa, H.W. (1982) Planta 156, 10-15]. Successive spectra acquired after adding Co2+ to Chlorella cells under deenergizing conditions allow us to follow the time course of movement of Cl- out of the cells.

PMID: 1627566 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
13C direct-detection biomolecular NMR spectroscopy in living cells.
13C direct-detection biomolecular NMR spectroscopy in living cells. 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2339-41 Authors: Bertini I, Felli IC, Gonnelli L, Kumar M V V, Pierattelli R
nmrlearner Journal club 0 06-18-2011 01:10 PM
[NMR paper] Multidimensional NMR spectroscopy for protein characterization and assignment inside cells.
Multidimensional NMR spectroscopy for protein characterization and assignment inside cells. Related Articles Multidimensional NMR spectroscopy for protein characterization and assignment inside cells. J Am Chem Soc. 2005 Aug 10;127(31):10848-9 Authors: Reardon PN, Spicer LD High-field, heteronuclear NMR spectroscopy of biological macromolecules in native cellular environments is limited by the low concentrations present and the long data acquisition times needed for the experiments. Successful 1D and 2D heteronuclear NMR data have been...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR.
Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie. 1996;78(3):155-64 Authors: Portais JC, Voisin P, Merle M, Canioni P The question as to whether glutamine and glucose are both required for optimal growth of glioma cells is studied through the role of these substrates on the metabolism of the cells. C6 rat...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered
Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies. Related Articles Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies. Biochemistry. 1994 Sep 13;33(36):10944-50 Authors: Swairjo MA, Roberts MF, Campos MB, Dedman JR, Seaton BA Calcium-dependent binding to phospholipid membranes is closely associated with annexin functional properties. In these studies, 31P- and 1H-nuclear...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[BMNRC community] Freezing point of Sodium Chloride
Freezing point of Sodium Chloride For ~ 15% sodium chloride solution, it’s freezing point is* -10 deg C. Links: http://chestofbooks.com/food/science/Experimental-Cookery/Freezing-Mixtures.html http://www.engineeringtoolbox.com/sodium-chloride-water-d_1187.html
nmrlearner News from other NMR forums 0 08-22-2010 01:23 AM
[NMR paper] Temperature-reversible eruptions of vesicles in model membranes studied by NMR.
Temperature-reversible eruptions of vesicles in model membranes studied by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Temperature-reversible eruptions of vesicles in model membranes studied by NMR. Biophys J. 1992 May;61(5):1413-26 Authors: Nezil FA, Bayerl S, Bloom M Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] A 35Cl and 37Cl NMR study of chloride binding to the erythrocyte anion transport prot
A 35Cl and 37Cl NMR study of chloride binding to the erythrocyte anion transport protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A 35Cl and 37Cl NMR study of chloride binding to the erythrocyte anion transport protein. Biophys Chem. 1991 Jul;40(3):329-37 Authors: Price WS, Kuchel PW, Cornell BA Band 3, the erythrocyte anion transport protein, mediates the one-for-one exchange of bicarbonate and chloride ions across the membrane and consequently plays an...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:06 AM.


Map