BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-28-2017, 08:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy.

Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy.

Related Articles Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy.

Org Biomol Chem. 2017 Jan 27;:

Authors: Lv C, Feng L, Zhao H, Wang G, Stavropoulos P, Ai L

Abstract
In the field of chiral recognition, reported chiral discrimination by (1)H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral ?-hydroxy acids, ?-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several ?-hydroxy acids and N-Ts-?-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by (1)H NMR spectroscopy. The results indicate that ?-hydroxy acids and N-Ts-?-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by (1)H NMR spectroscopy in most cases. The enantiomers of the ?-hydroxy acids and N-Ts-?-amino acids were assigned based on the change of integration of the (1)H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-?-amino acids 11 with different optical compositions were calculated based on the integration of the (1)H NMR signals of the CH3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.


PMID: 28127599 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Journal Highlight: 14N Solid-state NMR spectroscopy of amino acids
Journal Highlight: 14N Solid-state NMR spectroscopy of amino acids http://www.spectroscopynow.com/common/images/thumbnails/15950714de8.jpg14N Ultra-wideline solid-state NMR spectra were obtained for 16 naturally occurring amino acids and four related derivatives by using the WURST–CPMG pulse sequence and frequency-stepped techniques. Read the rest at Spectroscopynow.com
nmrlearner General 0 01-03-2017 01:47 AM
Journal Highlight: 14N Solid-state NMR spectroscopy of amino acids
Journal Highlight: 14N Solid-state NMR spectroscopy of amino acids http://www.spectroscopynow.com/common/images/thumbnails/15950714de8.jpgManual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval developmental stages was compared to automated homogenization for protein profiling by MALDI-TOF MS. Read the rest at Spectroscopynow.com
nmrlearner General 0 12-30-2016 04:53 PM
[NMR paper] Chiral Recognition Studies of ?-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.
Chiral Recognition Studies of ?-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Chiral Recognition Studies of ?-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy. J Org Chem. 2015 Jun 19;80(12):6267-74 Authors: Nemes A, Csóka T, Béni S, Farkas V, Rábai J, Szabó D Abstract Three chiral ?-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine...
nmrlearner Journal club 0 03-15-2016 11:57 AM
Nuclear overhauser spectroscopy of chiral CHD methylene groups
Nuclear overhauser spectroscopy of chiral CHD methylene groups Abstract Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures...
nmrlearner Journal club 0 11-28-2015 10:23 AM
[NMR paper] Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins.
Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins. Related Articles Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins. Top Curr Chem. 2013 May 14; Authors: Kuhn LT Abstract Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in...
nmrlearner Journal club 0 05-15-2013 03:12 PM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 01-28-2011 04:52 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:24 AM.


Map