BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-16-2012, 06:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The Chemoselective Reactions of Tyrosine-Containing G-Protein-Coupled Receptor Peptides with [Cp*Rh(H2O)3](OTf)2, Including 2D NMR Structures and the Biological Consequences

The Chemoselective Reactions of Tyrosine-Containing G-Protein-Coupled Receptor Peptides with [Cp*Rh(H2O)3](OTf)2, Including 2D NMR Structures and the Biological Consequences

H. Bauke Albada, Florian Wieberneit, Ingrid Dijkgraaf, Jessica H. Harvey, Jennifer L. Whistler, Raphael Stoll, Nils Metzler-Nolte and Richard H. Fish



Journal of the American Chemical Society
DOI: 10.1021/ja303010k




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled r
Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor. Related Articles Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor. J Am Chem Soc. 2005 Jun 8;127(22):8010-1 Authors: Tian C, Breyer RM, Kim HJ, Karra MD, Friedman DB, Karpay A, Sanders CR The seven-transmembrane-spanning G protein-coupled receptor (GPCR) superfamily plays many important roles in basic biology, human health, and human disease. Here, well-resolved solution NMR spectra are presented for a human...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solutio
Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Related Articles Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3409-13 Authors: Klein-Seetharaman J, Yanamala NV, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG G protein-coupled receptors are cell-surface seven-helical membrane proteins that undergo conformational changes on activation. The mammalian photoreceptor, rhodopsin, is the...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonis
The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep. Related Articles The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep. J Biomol Struct Dyn. 2003 Oct;21(2):201-10 Authors: Miskolzie M, Kotovych G The conformation of orexin-A, an orphan G-protein coupled receptor agonist has been determined when bound to sodium dodecylsulphate-d(25) (SDS) micelles by (1)H and (13)C NMR and molecular...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor
The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide. Related Articles The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide. Biopolymers. 2003 Jun;69(2):201-15 Authors: Miskolzie M, Kotovych G The tertiary structure of the pain modulating and anti-opiate neuropeptide, human neuropeptide AF (NPAF) (the sequence is AGEGLNSQFWSLAAPQRF-NH(2)), was determined by (1)H-NMR. The structure of NPAF was determined in two solvent systems, namely 50%/50%...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insigh
Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. Related Articles Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. J Mol Biol. 2001 Nov 16;314(1):129-38 Authors: Shekhtman A, Ghose R, Wang D, Cole PA, Cowburn D Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain,...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Sac
Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Related Articles Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Biopolymers. 1998 Nov;46(6):343-57 Authors: Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spec
Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spectral changes observed during phosphorylation of mobile tyrosine residues. Related Articles Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spectral changes observed during phosphorylation of mobile tyrosine residues. J Biol Chem. 1991 Jul 15;266(20):13405-10 Authors: Levine BA, Tavaré JM, Alejos E, Clack B, Sayed N Autophosphorylation of a soluble approximately 48-kDa derivative of the insulin receptor protein-tyrosine kinase...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spec
Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spectral changes observed during phosphorylation of mobile tyrosine residues. Related Articles Autophosphorylation of soluble insulin receptor protein-tyrosine kinases. 1H NMR spectral changes observed during phosphorylation of mobile tyrosine residues. J Biol Chem. 1991 Jul 15;266(20):13405-10 Authors: Levine BA, Tavaré JM, Alejos E, Clack B, Sayed N Autophosphorylation of a soluble approximately 48-kDa derivative of the insulin receptor protein-tyrosine kinase...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:01 AM.


Map