BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-20-2011, 03:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes

Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes


Abstract An approach for conveniently implementing low-power CN n ν and RN n ν symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile of the basic element. The efficacy of the approach is experimentally shown by the acquisition of 15Nâ??13C dipolar and 13Câ??13C scalar and dipolar coupling mediated chemical shift correlation spectra at representative MAS frequencies.
  • Content Type Journal Article
  • Pages 1-8
  • DOI 10.1007/s10858-011-9516-2
  • Authors
    • Christian Herbst, Department of Physics; Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 Thailand
    • Jirada Herbst, Department of Mathematics, Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 Thailand
    • Jörg Leppert, Research group Biomolecular NMR spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany
    • Oliver Ohlenschläger, Research group Biomolecular NMR spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany
    • Matthias Görlach, Research group Biomolecular NMR spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany
    • Ramadurai Ramachandran, Research group Biomolecular NMR spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
31P NMR correlation maps of 18O/16O chemical shift isotopic effects for phosphometabolite labeling studies
31P NMR correlation maps of 18O/16O chemical shift isotopic effects for phosphometabolite labeling studies Abstract Intramolecular correlations among the 18O-labels of metabolic oligophosphates, mapped by J-decoupled 31P NMR 2D chemical shift correlation spectroscopy, impart stringent constraints to the 18O-isotope distributions over the whole oligophosphate moiety. The multiple deduced correlations of isotopic labels enable determination of site-specific fractional isotope enrichments and unravel the isotopologue statistics. This approach ensures accurate determination of 18O-labeling...
nmrlearner Journal club 0 06-06-2011 12:53 AM
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields Abstract Sensitive 2D solid-state 13Câ??13C correlation spectra of amyloid β fibrils have been recorded at very fast spinning frequencies and very high magnetic fields. It is demonstrated that PARIS-xy recoupling using moderate rf amplitudes can provide structural information by promoting efficient magnetization transfer even under such challenging experimental conditions. Furthermore, it has been shown both experimentally and by numerical simulations that the method is not...
nmrlearner Journal club 0 04-01-2011 09:23 AM
[NMR paper] Resonance assignment of proteins with high shift degeneracy based on 5D spectral info
Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. Related Articles Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. J Am Chem Soc. 2005 Apr 6;127(13):4554-5 Authors: Atreya HS, Eletsky A, Szyperski T A suite of novel (5,3)D G2FT triple resonance NMR experiments encoding highly resolved 5D spectral information is presented for sequential resonance assignment of proteins exhibiting high chemical...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Histogram-based scoring schemes for protein NMR resonance assignment.
Histogram-based scoring schemes for protein NMR resonance assignment. Related Articles Histogram-based scoring schemes for protein NMR resonance assignment. J Bioinform Comput Biol. 2004 Dec;2(4):747-64 Authors: Wan X, Tegos T, Lin G In NMR protein structure determination, after the resonance peaks have been identified and chemical shifts from peaks across multiple spectra have been grouped into spin systems, associating these spin systems to their host residues is the key toward the success of structural information extraction and thus the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] CAMRA: chemical shift based computer aided protein NMR assignments.
CAMRA: chemical shift based computer aided protein NMR assignments. Related Articles CAMRA: chemical shift based computer aided protein NMR assignments. J Biomol NMR. 1998 Oct;12(3):395-405 Authors: Gronwald W, Willard L, Jellard T, Boyko RF, Rajarathnam K, Wishart DS, Sönnichsen FD, Sykes BD A suite of programs called CAMRA (Computer Aided Magnetic Resonance Assignment) has been developed for computer assisted residue-specific assignments of proteins. CAMRA consists of three units: ORB, CAPTURE and PROCESS. ORB predicts NMR chemical shifts...
nmrlearner Journal club 0 11-17-2010 11:15 PM
Broadband 15Nâ??13C dipolar recoupling via symmetry-based RF pulse schemes at high MA
Abstract An approach for generating efficient RNnnS, nk symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15Nâ??13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic â??Râ?? element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic â??Râ?? element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes
Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes Anika Kirschstein, Christian Herbst, Kerstin Riedel, Michela Carella, Jörg Leppert, Oliver Ohlenschläger, Matthias Görlach and Ramadurai Ramachandran Journal of Biomolecular NMR; 2008; 40(4); pp 227-237 Abstract: We have explored the design of broadband scalar coupling mediated 13C–13C and cross-relaxation suppressed 1H–1H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients...
Mikey Journal club 0 08-14-2008 12:42 AM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131 Abstract: Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...
stewart Journal club 0 08-05-2008 01:33 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:39 PM.


Map