BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-09-2013, 02:47 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.

CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.

CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.

J Comput Chem. 2013 Jul 6;

Authors: Huang J, Mackerell AD

Abstract
Protein structure and dynamics can be characterized on the atomistic level with both nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations. Here, we quantify the ability of the recently presented CHARMM36 (C36) force field (FF) to reproduce various NMR observables using MD simulations. The studied NMR properties include backbone scalar couplings across hydrogen bonds, residual dipolar couplings (RDCs) and relaxation order parameter, as well as scalar couplings, RDCs, and order parameters for side-chain amino- and methyl-containing groups. It is shown that the C36 FF leads to better correlation with experimental data compared to the CHARMM22/CMAP FF and suggest using C36 in protein simulations. Although both CHARMM FFs contains the same nonbond parameters, our results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the ?1 and ?2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions. This highlights the importance of proper treatment of the internal covalent components in modeling nonbond interactions with molecular mechanics FFs. © 2013 Wiley Periodicals, Inc.


PMID: 23832629 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles.
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles. Related Articles Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ?, ? and side-chain ?(1) and ?(2) dihedral angles. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 Authors: Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Abstract While the quality of the current CHARMM22/CMAP additive force field for...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field January 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60</br> </br> The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction...
nmrlearner Journal club 0 12-15-2012 09:51 AM
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field January 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60</br> </br> The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction...
nmrlearner Journal club 0 12-01-2012 06:10 PM
Superconducting Magnets Used to Observe Proteins, Atom-by-Atom - Azom.com
Superconducting Magnets Used to Observe Proteins, Atom-by-Atom - Azom.com http://www.bionmr.com//nt3.ggpht.com/news/tbn/t4dz7XpX589ZcM/6.jpg Azom.com <img alt="" height="1" width="1" /> Superconducting Magnets Used to Observe Proteins, Atom-by-Atom Azom.com â??This is a very specialized facility,â?? says Stanley Opella, professor of chemistry and biochemistry and director of the Center for NMR Spectroscopy and Imaging of Proteins, the organization that operates this building. The purpose of the facility is to ...
nmrlearner Online News 0 10-27-2012 03:04 AM
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60</br> Jakob T. Nielsen, Hamid R. Eghbalnia, Niels Chr. Nielsen</br> The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise,...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 23 May 2011</br> Jakob T., Nielsen , Hamid R., Eghbalnia , Niels Chr., Nielsen</br> The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we...
nmrlearner Journal club 0 05-24-2011 10:02 PM
Simple tests for the validation of multiple field spin relaxation data
Simple tests for the validation of multiple field spin relaxation data Abstract 15N spin relaxation data is widely used to extract detailed dynamic information regarding bond vectors such as the amide Nâ??H bond of the protein backbone. Analysis is typically carried using the Lipariâ??Szabo model-free approach. Even though the original model-free equation can be determined from single field R 1, R 2 and NOE, over-determination of more complex motional models is dependent on the recording of multiple field datasets. This is especially important for the characterization of conformational...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Generation of native-like protein structures from limited NMR data, modern force fiel
Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. Related Articles Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. J Biomol NMR. 2005 Jan;31(1):59-64 Authors: Chen J, Won HS, Im W, Dyson HJ, Brooks CL Determining an accurate initial native-like protein fold is one of the most important and time-consuming steps of de novo NMR structure determination. Here we demonstrate that high-quality...
nmrlearner Journal club 0 11-24-2010 11:14 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:03 AM.


Map