BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-03-2017, 03:24 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterizing Protein Dynamics with Integrative Useof Bulk and Single-Molecule Techniques

Characterizing Protein Dynamics with Integrative Useof Bulk and Single-Molecule Techniques



Biochemistry
DOI: 10.1021/acs.biochem.7b00817



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A general mechanism of photoconversion of green-to-red fluorescent proteins based on blue and infrared light reduces phototoxicity in live-cell single-molecule imaging
A general mechanism of photoconversion of green-to-red fluorescent proteins based on blue and infrared light reduces phototoxicity in live-cell single-molecule imaging Photoconversion of fluorescent proteins by blue and complementary near-infrared light, termed primed conversion (PC), is a mechanism recently discovered for Dendra2. We demonstrate that controlling the conformation of arginine at residue 66 by threonine at residue 69 of fluorescent proteins from Anthozoan families (Dendra2, mMaple, Eos, mKikGR, pcDronpa protein families) represents a general route to facilitate PC....
nmrlearner Journal club 0 06-02-2017 08:33 PM
[NMR paper] High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. Related Articles High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. J Magn Reson. 2017 Apr;277:179-185 Authors: Nguyen LM, Roche J Abstract High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein...
nmrlearner Journal club 0 04-02-2017 11:43 AM
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation Publication date: April 2017 Source:Journal of Magnetic Resonance, Volume 277</br> Author(s): Luan M. Nguyen, Julien Roche</br> High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential...
nmrlearner Journal club 0 03-30-2017 06:42 PM
[NMR paper] Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2
Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2 Single-molecule force spectroscopy (SMFS) has become a powerful tool in investigating the mechanical unfolding/folding of proteins at the single-molecule level. Polyproteins made of tandem identical repeats have been widely used in atomic force microscopy (AFM)-based SMFS studies, where polyproteins not only serve as fingerprints to identify single-molecule stretching events, but may also improve statistics of data...
nmrlearner Journal club 0 12-27-2016 11:04 PM
[NMR paper] Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS.
Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A. 2016 Aug 26; Authors: Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B Abstract The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large...
nmrlearner Journal club 0 08-28-2016 11:03 AM
[NMR paper] An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding.
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding. Protein Sci. 2015 May 26; Authors: Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K ...
nmrlearner Journal club 0 05-27-2015 10:39 AM
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1-antitrypsin upon ligand binding
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1-antitrypsin upon ligand binding Abstract Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whilst ion mobility (IM)-MS can report on conformational behaviour of specific states. We used IM-MS to study a conformationally labile protein (?1-antitrypsin) that undergoes pathological polymerisation in the context of point mutations. The folded, native state of the Z variant remains...
nmrlearner Journal club 0 05-26-2015 08:09 PM
[NMR paper] Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR.
Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. J Phys Chem B. 2013 Jun 24; Authors: Campos LA, Sadqi M, Liu J, Wang X, English DS, Munoz V Abstract Theory predicts that folding free energy landscapes are intrinsically malleable, and as such are expected to respond to perturbations in topographically complex...
nmrlearner Journal club 0 06-27-2013 01:52 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:41 AM.


Map