BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,700
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR.

Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR.

Related Articles Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR.

Eur J Biochem. 1991 Aug 15;200(1):139-48

Authors: Folkers PJ, Stassen AP, van Duynhoven JP, Harmsen BJ, Konings RN, Hilbers CW

Recording of good quality NMR spectra of the single-stranded DNA binding protein gene V of the bacteriophage M13 is hindered by a specific protein aggregation effect. Conditions are described for which NMR spectra of the protein can best be recorded. The aromatic part of the spectrum has been reinvestigated by means of two-dimensional total correlation spectroscopy. Sequence-specific assignments were obtained for all of the aromatic amino acid residues with the help of a series of single-site mutant proteins. The solution properties of the mutants of the aromatic amino acid residues have been fully investigated. It has been shown that, for these proteins, either none or only local changes occur compared to the wild-type molecule. Spin-labeled oligonucleotide-binding studies of wild-type and mutant gene V proteins indicate that tyrosine 26 and phenylalanine 73 are the only aromatic residues involved in binding to short stretches of single-stranded DNA. The degree of aggregation of wild-type gene V protein is dependent on both the total protein and salt concentration. The data obtained suggest the occurrence of specific protein-protein interactions between dimeric gene V protein molecules in which the tyrosine residue at position 41 is involved. This hypothesis is further strengthened by the observation that the solubility of tyrosine 41 mutants of gene V protein is significantly higher than that of the wild-type protein. The discovery of the so-called 'solubility' mutants of M13 gene V protein has finally made it possible to study the solution structure of gene V protein and its interaction with single-stranded DNA by means of two-dimensional NMR.

PMID: 1879419 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR Abstract Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1â?˛ and C5â?˛ with...
nmrlearner Journal club 0 11-30-2011 10:45 PM
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant. An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant. Proteins. 2011 May 16; Authors: Gayen S, Li Q, Chen AS, Nguyen TH, Huang Q, Hill J, Kang C The human Ether-ŕ-go-go Related Gene (hERG) potassium channel plays an important role in the heart by controlling the rapid delayed rectifier current. The N-terminal 135 residues (NTD) contain a Per-Arnt-Sim (PAS) domain and an N-terminal amphipathic helix....
nmrlearner Journal club 0 06-12-2011 12:15 AM
NMR Characterization of a "Fibril-Ready" State of Demetalated Wild-Type Superoxide Dismutase.
NMR Characterization of a "Fibril-Ready" State of Demetalated Wild-Type Superoxide Dismutase. NMR Characterization of a "Fibril-Ready" State of Demetalated Wild-Type Superoxide Dismutase. J Am Chem Soc. 2010 Dec 16; Authors: Banci L, Bertini I, Blaževitš O, Cantini F, Lelli M, Luchinat C, Mao J, Vieru M Demetalated superoxide dismutase (SOD1) is a transient species, fibrillogenic in nature and of biomedical interest. It is a conformationally disordered protein difficult to characterize. We have developed a strategy based on the NMR investigation...
nmrlearner Journal club 0 12-18-2010 12:00 PM
NMR Characterization of a “Fibril-Ready” State of Demetalated Wild-Type Superoxide Dismutase
NMR Characterization of a “Fibril-Ready” State of Demetalated Wild-Type Superoxide Dismutase Lucia Banci, Ivano Bertini, Olga Blaževitš, Francesca Cantini, Moreno Lelli, Claudio Luchinat, Jiafei Mao and Miguela Vieru http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1069689/aop/images/medium/ja-2010-069689_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja1069689 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/uAjKy7vWoHs
nmrlearner Journal club 0 12-17-2010 12:50 AM
[NMR paper] A strategy for the NMR characterization of type II copper(II) proteins: the case of t
A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. Related Articles A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. J Am Chem Soc. 2003 Jun 18;125(24):7200-8 Authors: Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR CopC from Pseudomonas syringae was found to be a protein capable of binding both Cu(I) and Cu(II) at two different...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Tumor suppressor p16INK4A: structural characterization of wild-type and mutant protei
Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. Biochemistry. 1996 Jul 23;35(29):9475-87 Authors: Tevelev A, Byeon IJ, Selby T, Ericson K, Kim HJ, Kraynov V, Tsai MD The tumor suppressor p16INK4A with eight N-terminal amino acids deleted (p16/delta 1-8)...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-
13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin. Biophys J. 1994 Jun;66(6):2111-26 Authors: Kemple MD, Yuan...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR.
Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Characterization of wild-type and mutant M13 gene V proteins by means of 1H-NMR. Eur J Biochem. 1991 Aug 15;200(1):139-48 Authors: Folkers PJ, Stassen AP, van Duynhoven JP, Harmsen BJ, Konings RN, Hilbers CW Recording of good quality NMR spectra of the single-stranded DNA binding protein gene V of the...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:36 PM.


Map