BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-27-2016, 11:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization of Protein Tyrosine Phosphatase 1BInhibition by Chlorogenic Acid and Cichoric Acid

Characterization of Protein Tyrosine Phosphatase 1BInhibition by Chlorogenic Acid and Cichoric Acid



Biochemistry
DOI: 10.1021/acs.biochem.6b01025



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Trichoketides A and B, two new protein tyrosine phosphatase 1B inhibitors from ... - Nature.com
Trichoketides A and B, two new protein tyrosine phosphatase 1B inhibitors from ... - Nature.com <img alt="" height="1" width="1"> Trichoketides A and B, two new protein tyrosine phosphatase 1B inhibitors from ... Nature.com The 1H and 13C NMR spectra (in acetone-d6) showed 23 proton and 16 carbon signals (Table 1) that were classified into one methyl, eight sp3 methylene, two sp3 oxygenated methine, two sp2 methine, two sp2 quaternary and one carbonyl carbons through ... Read here
nmrlearner Online News 0 04-22-2015 03:33 PM
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) Abstract The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10Â*Ã?). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a...
nmrlearner Journal club 0 11-28-2014 11:37 AM
A 1H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy
A 1H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy Available online 12 December 2012 Publication year: 2012 Source:Biochimie</br> </br> Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the tyrosine kinase growth factor signaling pathway, which is involved in major physiological mechanisms such as liver regeneration. We investigate early hepatic metabolic events produced by partial hepatectomy (PHx) for PTP1B deficient (PTP1B KO) and wild type (WT) mice using proton...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues <div class="Abstract">Abstract In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH.
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH. Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH. Chem Biol Drug Des. 2010 Nov 30; Authors: Leone M, Barile E, Dahl R, Pellecchia M We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM...
nmrlearner Journal club 0 12-02-2010 02:54 PM
[NMR paper] NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from
NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis. Related Articles NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis. J Biomol NMR. 2005 Apr;31(4):363 Authors: Xu H, Zhang P, Jin C
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR assignment and structural characterization of the fatty acid binding protein from
NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. Related Articles NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. J Biomol NMR. 2003 Apr;25(4):355-6 Authors: Lücke C, Kizilbash N, van Moerkerk HT, Veerkamp JH, Hamilton JA
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monom
Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. Related Articles Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. J Mol Biol. 2002 Sep 6;322(1):137-52 Authors: Akerud T, Thulin E, Van Etten RL, Akke M Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:09 AM.


Map