Related ArticlesCharacterization of protein-protein interfaces in large complexes by solid state NMR solvent paramagnetic relaxation enhancements.
J Am Chem Soc. 2017 Aug 07;:
Authors: Öster C, Kosol S, Hartlmüller C, Lamley JM, Iuga D, Oss A, Org ML, Vanatalu K, Samoson A, Madl T, Lewandowski JR
Abstract
Solid-state NMR is becoming a viable alternative for obtaining information about structures and dynamics of large biomolecular complexes including ones that are not accessible to other high resolution biophysical techniques. In this context, methods for probing protein-protein interfaces at atomic resolution are highly desirable. Solvent paramagnetic relaxation enhancements (sPREs) proved to be a powerful method for probing protein-protein interfaces in large complexes in solution but have not been employed towards this goal in the solid state. We demonstrate that 1H and 15N relaxation-based sPREs provide a powerful tool for characterizing intermolecular interactions in large assemblies in the solid state. We present approaches for measuring sPREs in practically the entire range of magic angle spinning frequencies used for biomolecular studies and discuss their benefits and limitations. We validate the approach on crystalline GB1 with our experimental results in good agreement with theoretical predictions. Finally, we use sPREs to characterize protein-protein interfaces in the GB1 complex with immunoglobulin (IgG). Our results suggest the potential existence of an additional binding site and provide new insights into GB1:IgG complex structure that amend and revise the current model available from studies with IgG fragments. We demonstrate sPREs as a practical, widely applicable, robust and very sensitive technique for determining intermolecular interaction interfaces in large biomolecular complexes in the solid state.
PMID: 28780861 [PubMed - as supplied by publisher]
[NMR paper] Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
Related Articles Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
Methods Enzymol. 2015;558:333-362
Authors: Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance...
nmrlearner
Journal club
0
06-13-2015 11:09 PM
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement.
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement.
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement.
J Phys Chem Lett. 2011 Jul 21;2(14):1836-1841
Authors: Tang M, Berthold DA, Rienstra CM
Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is...
[NMR paper] A novel NMR method for determining the interfaces of large protein-protein complexes.
A novel NMR method for determining the interfaces of large protein-protein complexes.
Related Articles A novel NMR method for determining the interfaces of large protein-protein complexes.
Nat Struct Biol. 2000 Mar;7(3):220-3
Authors: Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I
Identification of the interfaces of large (Mr > 50,000) protein-protein complexes in solution by high resolution NMR has typically been achieved using experiments involving chemical shift perturbation and/or hydrogen-deuterium exchange of the main chain amide...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Angew Chem Int Ed Engl. 2010 Jul 29;
Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner
Journal club
0
08-17-2010 03:36 AM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Angew Chem Int Ed Engl. 2010 Jul 28;
Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner
Journal club
0
08-17-2010 03:36 AM
Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3â?? for protein structure
Abstract Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and proteinâ??ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, 3â??, can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of 3â?? to protein, allowing quantitative distance measurements for nuclear spins...