A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
J Biomol NMR. 2011 Sep 22;
Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM
Abstract
X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner
Journal club
0
09-23-2011 05:30 PM
[NMR paper] Protein structure determination by high-resolution solid-state NMR spectroscopy: appl
Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
Related Articles Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
J Am Chem Soc. 2005 Jun 22;127(24):8618-26
Authors: Zech SG, Wand AJ, McDermott AE
High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent p
Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent progress and perspectives.
Related Articles Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent progress and perspectives.
Arch Pharm (Weinheim). 2005 Jun;338(5-6):217-28
Authors: Luca S, Heise H, Lange A, Baldus M
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloi
High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation.
Related Articles High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation.
Angew Chem Int Ed Engl. 2005 Apr 15;44(16):2441-4
Authors: Siemer AB, Ritter C, Ernst M, Riek R, Meier BH
nmrlearner
Journal club
0
11-25-2010 08:21 PM
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Reson
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information.
Related Articles High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information.
J Am Chem Soc. 2010 Oct 12;
Authors: Asami S, Schmieder P, Reif B
Biological magic angle spinning (MAS) solid-state nuclear magnetic resonance spectroscopy has developed rapidly over the past two decades. For the structure determination of a protein by solid-state NMR,...
nmrlearner
Journal club
0
10-15-2010 02:01 AM
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonan
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information
Sam Asami, Peter Schmieder and Bernd Reif
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja106170h/aop/images/medium/ja-2010-06170h_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja106170h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/FuDz8jUhWPE
nmrlearner
Journal club
0
10-13-2010 04:10 AM
High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein
High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein
Abstract High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13Cā?², 13CĪ± and 13CĪ² sites are resolved in 13Cā??13C and 15Nā??13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates...
nmrlearner
Journal club
0
09-01-2010 10:56 AM
High resolution (13)C-detected solid-state NMR spectroscopy of a deuterated protein.
High resolution (13)C-detected solid-state NMR spectroscopy of a deuterated protein.
Related Articles High resolution (13)C-detected solid-state NMR spectroscopy of a deuterated protein.
J Biomol NMR. 2010 Aug 29;
Authors: Tang M, Comellas G, Mueller LJ, Rienstra CM
High resolution (13)C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all (15)N, (13)C', (13)Calpha and (13)Cbeta sites are resolved in (13)C-(13)C and (15)N-(13)C spectra, with significant...