[NMR paper] Characterization of the Immersion Properties of the Peripheral Membrane Anchor of the FATC Domain of the Kinase 'Target of Rapamycin' by NMR, Oriented CD Spectroscopy and MD Simulations.
Characterization of the Immersion Properties of the Peripheral Membrane Anchor of the FATC Domain of the Kinase 'Target of Rapamycin' by NMR, Oriented CD Spectroscopy and MD Simulations.
Characterization of the Immersion Properties of the Peripheral Membrane Anchor of the FATC Domain of the Kinase 'Target of Rapamycin' by NMR, Oriented CD Spectroscopy and MD Simulations.
J Phys Chem B. 2014 Apr 11;
Authors: Sommer LA, Janke JJ, Bennett WF, Bürck J, Ulrich AS, Tieleman DP, Dames SA
Abstract
The multidomain ser/thr kinase 'target of rapamycin' (TOR) centrally controls eukaryotic growth and metabolism. The C-terminal FATC domain is important for TOR regulation and was suggested to directly mediate TOR-membrane interactions. Here, we present a detailed characterization of the membrane immersion properties of the oxidized and reduced yeast TOR1 FATC domain (2438-2470 = y1fatc). The immersion depth was characterized by NMR-monitored interaction studies with DPC micelles containing paramagnetically tagged 5- or 16-doxyl stearic acid (5-/ 16-SASL) and by analyzing the paramagnetic relaxation enhancement (PRE) from Mn2+ in the solvent. Complementary MD-simulations of micellar systems in the absence and presence of protein showed that 5-/16-SASL can move in the micelle and that 16-SASL can bend such that the doxyl group is close to the headgroup region and not deep in the interior as commonly assumed. Based on oriented CD (OCD) data, the single ?-helix of oxidized/reduced y1fatc has an angle to the membrane normal of ~30-60°/~35-65° in neutral and ~5-35°/~0-30° in negatively charged bilayers. The presented experimentally well-founded models help to better understand how this redox-sensitive peripheral membrane anchor may be part of a network of protein-protein and protein-membrane interactions regulating TOR localization at different cellular membranes. Moreover, the presented work provides a good methodological reference for the structural characterization of other peripherally membrane associating proteins.
PMID: 24725177 [PubMed - as supplied by publisher]
[NMR paper] Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy.
Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy.
FEBS Lett. 2014 Apr 3;
Authors: Sommer LA, Dames SA
...
nmrlearner
Journal club
0
04-08-2014 08:02 PM
[NMR paper] Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.
Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.
Related Articles Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.
J Phys Chem B. 2014 Apr 1;
Authors: Maltsev S, Hudson S, Sahu ID, Liu L, Lorigan GA
Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that 31P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of...
nmrlearner
Journal club
0
04-03-2014 12:59 PM
NMR of Conditional Peripheral Membrane Proteins
NMR of Conditional Peripheral Membrane Proteins
Publication date: 28 January 2014
Source:Biophysical Journal, Volume 106, Issue 2, Supplement 1</br>
Author(s): Krystal A. Morales , Mikaela D. Stewart , Tatyana I. Igumenova</br>
</br></br>
</br></br>
More...
nmrlearner
Journal club
0
01-29-2014 12:50 AM
[NMR paper] NMR structure and MD simulations of the AAA protease intermembrane space domain indicates peripheral membrane localization within the hexaoligomer.
NMR structure and MD simulations of the AAA protease intermembrane space domain indicates peripheral membrane localization within the hexaoligomer.
NMR structure and MD simulations of the AAA protease intermembrane space domain indicates peripheral membrane localization within the hexaoligomer.
FEBS Lett. 2013 Sep 18;
Authors: Ramelot TA, Yang Y, Sahu ID, Lee HW, Xiao R, Lorigan GA, Montelione GT, Kennedy MA
Abstract
We have determined the solution NMR structure of the intermembrane space domain (IMSD) of the human mitochondrial...
nmrlearner
Journal club
0
09-24-2013 10:18 AM
[NMR paper] Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Biophys J. 2013 Aug 6;105(3):699-710
Authors: Michalek M, Salnikov ES, Bechinger B
Abstract
The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein's polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development...
nmrlearner
Journal club
0
08-13-2013 04:26 PM
[NMR paper] NMR- and CD-Monitored Lipid-Binding Studies Suggest a General Role for the FATC Domain as Membrane Anchor of Phosphatidyl-Inositol-3 Kinase-Related Kinases (PIKKs).
NMR- and CD-Monitored Lipid-Binding Studies Suggest a General Role for the FATC Domain as Membrane Anchor of Phosphatidyl-Inositol-3 Kinase-Related Kinases (PIKKs).
Related Articles NMR- and CD-Monitored Lipid-Binding Studies Suggest a General Role for the FATC Domain as Membrane Anchor of Phosphatidyl-Inositol-3 Kinase-Related Kinases (PIKKs).
J Biol Chem. 2013 May 13;
Authors: Sommer LA, Schaad M, Dames SA
Abstract
The FATC domain is shared by all members of the family of phosphatidylinositol-3 kinase related kinases (PIKKs). It has been...
nmrlearner
Journal club
0
05-15-2013 03:12 PM
Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen
Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen
Abstract In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
[NMR paper] Solution structure and orientation of the transmembrane anchor domain of the HIV-1-en
Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy.
Biochemistry. 1999 Apr 20;38(16):5272-82
Authors: Wray V, Kinder R, Federau T, Henklein P, Bechinger B, Schubert U
The...