BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2013, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization of a Cyclic Nucleotide-Activated K(+) Channel and its Lipid Environment by Using Solid-State NMR Spectroscopy.

Characterization of a Cyclic Nucleotide-Activated K(+) Channel and its Lipid Environment by Using Solid-State NMR Spectroscopy.

Characterization of a Cyclic Nucleotide-Activated K(+) Channel and its Lipid Environment by Using Solid-State NMR Spectroscopy.

Chembiochem. 2013 Aug 16;

Authors: Cukkemane A, Baldus M

Abstract
Voltage-gated ion channels are large tetrameric multidomain membrane proteins that play crucial roles in various cellular transduction pathways. Because of their large size and domain-related mobility, structural characterization has proved challenging. We analyzed high-resolution solid-state NMR data on different isotope-labeled protein constructs of a bacterial cyclic nucleotide-activated K(+) channel (MlCNG) in lipid bilayers. We could identify the different subdomains of the 4×355 residue protein, such as the voltage-sensing domain and the cyclic nucleotide binding domain. Comparison to ssNMR data obtained on isotope-labeled cell membranes suggests a tight association of negatively charged lipids to the channel. We detected spectroscopic polymorphism that extends beyond the ligand binding site, and the corresponding protein segments have been associated with mutant channel types in eukaryotic systems. These findings illustrate the potential of ssNMR for structural investigations on large membrane-embedded proteins, even in the presence of local disorder.


PMID: 23956185 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.
Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy. Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy. Acc Chem Res. 2013 Jul 5; Authors: Opella SJ Abstract One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information...
nmrlearner Journal club 0 07-09-2013 02:47 PM
[NMR paper] Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim Biophys Acta. 2013 Feb;1828(2):824-33 Authors: Witte K, Olausson BE, Walrant A, Alves ID, Vogel A ...
nmrlearner Journal club 0 04-05-2013 10:53 AM
[NMR paper] Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment.
Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Methods Mol Biol. 2013;974:389-413 Authors: Arora A Abstract Several recent advancements have transformed solution NMR spectroscopy into a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or...
nmrlearner Journal club 0 02-14-2013 02:37 PM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment Abstract Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives,...
nmrlearner Proteins 0 01-22-2011 03:46 AM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR. 2011 Jan 19; Authors: Fan Y, Shi L, Ladizhansky V, Brown LS Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties...
nmrlearner Journal club 0 01-21-2011 01:22 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Biochim Biophys Acta. 2010 Dec 28; Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
nmrlearner Journal club 0 01-05-2011 09:51 PM
[NMR paper] Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and
Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective. Related Articles Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective. Biophys J. 2004 Oct;87(4):2456-69 Authors: Arnold A, Paris M, Auger M Lateral diffusion is an essential process for the functioning of biological membranes. Solid-state nuclear magnetic resonance (NMR) is, a priori, a well-suited technique to study lateral diffusion within a heterogeneous...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 1998 Feb;7(2):342-8 Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:31 AM.


Map